Nettle Manual

For the Nettle Library version 3.4

Niels Moller

This manual is for the Nettle library (version 3.4), a low-level cryptographic library.
Originally written 2001 by Niels Méller, updated 2017.
This manual is placed in the public domain. You may freely copy it, in whole

or in part, with or without modification. Attribution is appreciated, but not
required.

Table of Contents

1 Introduction........... 1
2 Copyright 2
3 Conventions............. 4
4 Example............ 5
5 Linking 7
6 Compatibility 8
7 Reference....... 9
7.1 Hash functions......... ... 9
7.1.1 Recommended hash functions.............................. 9
T.1.1.1 0 SHA2B6 . .ottt et e 9

T.1.1.2 SHA224. ..o 10

T.1.1.3 SHABL. o 10

7.1.1.4 SHA384 and other variants of SHA512.................. 11

T.1.1.5 SHAS3-224 . .o 12

T.1.1.6 SHAS-256 . ..ottt 13

T.1.1.7 SHASB-384 . .o 13

T.1.1.8 SHAS3-512 . . 14

T7.1.1.9 SHAKE-256. ...ttt i e i 14

7.1.2 Miscellaneous hash functions 15
7.1.2.1 STREEBOGSBI2 ..ottt 15

7.1.2.2 STREEBOG256 . ..ottt it i 15

7.1.3 Legacy hash functions.......... 16
T.1.3. 1 MDD e 16

T.01.3.2 MDD e 17

T01.3.3 MDA oo 17

7.1.3.4 RIPEMDIGOttt e 18

T.1.3.0 SHAL. ..o 18

7.1.3.6 GOSTHASH94 and GOSTHASH94CP 19

7.1.4 The struct nettle_hash abstraction 20

7.2 Cipher functions ... 21
.2 AES 22
7.2.2 ARCFOUR ... 24
7.2.3 ARCTWO ... o e 25
7.2.4 BLOWEFISH 26
725 Camellia. ... 27

7.2.6 CAST 128 ... 29
727 ChaCha........oo i 30
7.2.7.1 32-bit counter variant 31
7.2.8 DES . 31
7.2.9 DES3 . 32
7.2.10 Salsa20 ... 33
7211 SERPENT 34
7.2.12 TWOFISH. ... e 35
7.2.13 The struct nettle_cipher abstraction................. 36
7.3 Cipher modes. 37
7.3.1 Cipher Block Chaining oo, 37
7.3.2 Counter mode...... ... 38
7.3.3 Cipher Feedback mode, 39
7.3.4 XEX-based tweaked-codebook mode with ciphertext stealing
.. 42
7.3.4.1 General (XTS) interface................oooiiiii... 43
7.3.4.2 XTS-AES interface..............cooiiiiiiiiii .. 43
7.4 Authenticated encryption with associated data 44
T4 BEAX 45
7.4.1.1 General EAX interface............coiiiiiiiinn .. 45
7.4.1.2 EAX helper macros.ccouviiiiiiieeniiea.n. 46
7.4.1.3 EAX-AES128 interface................ 47
7.4.2 Galois counter modeoo 47
7.4.2.1 General GCM interface ..., 48
7.4.2.2 GCM helper macroscovviiiiiiiiniiea.n. 49
7.4.2.3 GCM-AES interface...............ciiiiiiinnnenn .. 50
7.4.2.4 GCM-Camellia interfaceccooo..... 51
7.4.3 Counter with CBC-MAC mode........................... 52
7.4.3.1 General CCM interface ..., 53
7.4.3.2 CCM message interface 54
7.4.3.3 COCM-AES interface...........ccovviiiiiiiiiiiiiinn.. 55
7.4.4 ChaCha-Polyl305o 57
7.4.5 Synthetic Initialization Vector AEAD..................... 58
7.4.5.1 General interface.......... ... i 58
7.4.5.2 SIV-CMAC-AES interface 59
7.4.6 The struct nettle_aead abstraction 59
7.5 Keyed Hash Functions 60
T.5.1 HMAC .. 61
7.5.2 Concrete HMAC functionsccovviiiiiiinnnnnnn.. 62
7.5.2.1 HMAC-MDS5 ..ot 62
7.5.2.2 HMAC-RIPEMDI160ottt 62
7.5.2.3 HMAC-SHAL. ... 63
7.5.2.4 HMAC-SHA256 63
7.5.2.5 HMAC-SHABL2 ... 63
7.5.3 UMAC .. 64
7.5.4 CMAC ..o 66
T7.5.5 Polyl305. .. . 67

7.6 Key derivation Functions............. i i, 68

ii

7.6.1 HKDF: HMAC-based Extract-and-Expand................ 68
7.6.2 PBKDE2 ...ttt e e e 69
7.6.3 Concrete PBKDF2 functions............coovvviinieenn... 70
7.6.3.1 PBKDF2-HMAC-SHAL 70
7.6.3.2 PBKDF2-HMAC-SHA256ooiiiiiiie i 70
7.6.3.3 PBKDF2-HMAC-SHA384 ...t 70
7.6.3.4 PBKDF2-HMAC-SHAS512 ... oot 70

7.7 Public-key algorithms 71
T L RS A . 72
7.7.1.1 Nettle’s RSA support ..., 73

7.7 2 DS A o 78
7.7.2.1 Nettle’s DSA supportcoovitiiiniiinieann. 80
7.7.2.2 OId, deprecated, DSA interface 81

T7.7.3 EIIPIC CUIVES . v oottt ettt ettt et iiieenns 83
7.7.3.1 Side-channel silence it 83
7.7.3.2 ECDSA ... 84
7.7.3.3 GOSTDSA ... 85
7.7.3.4 Curve25519 and Curved4d8 ..., 87
7.7.3.5 EdDSA ... 88

7.8 Randommnessoooiiiiiii 89
T.8.1 YaITOW. . oottt 92
7.9 ASCIL encoding cvriiin e e 94
7.10 Miscellaneous functions ..., 97
7.11 Compatibility functions..........o i 97
8 Traditional Nettle Soup....................... 98
9 Installation............. 99

Function and Concept Index.................... 100

iii

Chapter 1: Introduction 1

1 Introduction

Nettle is a cryptographic library that is designed to fit easily in more or less any context:
In crypto toolkits for object-oriented languages (C++, Python, Pike, ...), in applications like
LSH or GNUPG, or even in kernel space. In most contexts, you need more than the basic
cryptographic algorithms, you also need some way to keep track of available algorithms, their
properties and variants. You often have some algorithm selection process, often dictated by
a protocol you want to implement.

And as the requirements of applications differ in subtle and not so subtle ways, an API
that fits one application well can be a pain to use in a different context. And that is why
there are so many different cryptographic libraries around.

Nettle tries to avoid this problem by doing one thing, the low-level crypto stuff, and
providing a simple but general interface to it. In particular, Nettle doesn’t do algorithm
selection. It doesn’t do memory allocation. It doesn’t do any 1/0.

The idea is that one can build several application and context specific interfaces on
top of Nettle, and share the code, test cases, benchmarks, documentation, etc. Examples
are the Nettle module for the Pike language, and LSH, which both use an object-oriented
abstraction on top of the library.

This manual explains how to use the Nettle library. It also tries to provide some back-
ground on the cryptography, and advice on how to best put it to use.

Chapter 2: Copyright 2

2 Copyright

Nettle is dual licenced under the GNU General Public License version 2 or later, and the
GNU Lesser General Public License version 3 or later. When using Nettle, you must comply
fully with all conditions of at least one of these licenses. A few of the individual files are
licensed under more permissive terms, or in the public domain. To find the current status
of particular files, you have to read the copyright notices at the top of the files.

This manual is in the public domain. You may freely copy it in whole or in part, e.g.,
into documentation of programs that build on Nettle. Attribution, as well as contribution
of improvements to the text, is of course appreciated, but it is not required.

A list of the supported algorithms, their origins, and exceptions to the above licensing;:

AES The implementation of the AES cipher (also known as rijndael) is written by
Rafael Sevilla. Assembler for x86 by Rafael Sevilla and Niels Moller, Sparc
assembler by Niels Moller.

ARCFOUR
The implementation of the ARCFOUR (also known as RC4) cipher is written
by Niels Moller.

ARCTWO
The implementation of the ARCTWO (also known as RC2) cipher is written by
Nikos Mavroyanopoulos and modified by Werner Koch and Simon Josefsson.

BLOWFISH
The implementation of the BLOWFISH cipher is written by Werner Koch, copy-
right owned by the Free Software Foundation. Also hacked by Simon Josefsson
and Niels Moller.

CAMELLIA
The C implementation is by Nippon Telegraph and Telephone Corporation
(NTT), heavily modified by Niels Moller. Assembler for x86 and x86_64 by
Niels Moller.

CAST128 The implementation of the CAST128 cipher is written by Steve Reid. Released
into the public domain.

CHACHA Implemented by Joachim Strombergson, based on the implementation of
SALSA20 (see below). Assembly for x86_64 by Niels Méller.

DES The implementation of the DES cipher is written by Dana L. How, and released
under the LGPL, version 2 or later.
GOSTHASHY/

The C implementation of the GOST94 message digest is written by Aleksey
Kravchenko and was ported from the rhash library by Nikos Mavrogiannopou-
los. It is released under the MIT license.

MD2 The implementation of MD2 is written by Andrew Kuchling, and hacked some
by Andreas Sigfridsson and Niels Moller. Python Cryptography Toolkit license
(essentially public domain).

Chapter 2: Copyright 3

MDj This is almost the same code as for MD5 below, with modifications by Marcus
Comstedt. Released into the public domain.

MDb5 The implementation of the MD5 message digest is written by Colin Plumb. It
has been hacked some more by Andrew Kuchling and Niels Moller. Released
into the public domain.

PBKDF2 The C implementation of PBKDF2 is based on earlier work for Shishi and
GnuTLS by Simon Josefsson.

RIPEMD160
The implementation of RIPEMD160 message digest is based on the code in
libgcrypt, copyright owned by the Free Software Foundation. Ported to Nettle
by Andres Mejia.

SALSA20 The C implementation of SALSA20 is based on D. J. Bernstein’s reference
implementation (in the public domain), adapted to Nettle by Simon Josefsson,
and heavily modified by Niels Moller. Assembly for x86_64 and ARM by Niels
Moller.

SERPENT
The implementation of the SERPENT cipher is based on the code in libgerypt,
copyright owned by the Free Software Foundation. Adapted to Nettle by Simon
Josefsson and heavily modified by Niels Moller. Assembly for x86_64 by Niels
Moller.

POLY1305
Based on the implementation by Andrew M. (floodyberry), modified by Nikos
Mavrogiannopoulos and Niels Moller. Assembly for x86_64 by Niels Moller.

SHA1 The C implementation of the SHA1 message digest is written by Peter Gut-
mann, and hacked some more by Andrew Kuchling and Niels Moller. Released
into the public domain. Assembler for x86, x86_.64 and ARM by Niels Moller,
released under the LGPL.

SHA?2 Written by Niels Moller, using Peter Gutmann’s SHA1 code as a model.

SHAS3 Written by Niels Moller.

TWOFISH
The implementation of the TWOFISH cipher is written by Ruud de Rooij.

UMAC Written by Niels Moller.

CMAC Written by Nikos Mavrogiannopoulos, Niels Moller, Jeremy Allison, Michael
Adam and Stefan Metzmacher.

RSA Written by Niels Moller. Uses the GMP library for bignum operations.

DSA Written by Niels Moller. Uses the GMP library for bignum operations.

ECDSA Written by Niels Moller. Uses the GMP library for bignum operations. Devel-

opment of Nettle’s ECC support was funded by the .SE Internet Fund.

Chapter 3: Conventions 4

3 Conventions

For each supported algorithm, there is an include file that defines a context struct, a few
constants, and declares functions for operating on the context. The context struct encap-
sulates all information needed by the algorithm, and it can be copied or moved in memory
with no unexpected effects.

For consistency, functions for different algorithms are very similar, but there are some
differences, for instance reflecting if the key setup or encryption function differ for encryp-
tion and decryption, and whether or not key setup can fail. There are also differences
between algorithms that don’t show in function prototypes, but which the application must
nevertheless be aware of. There is no big difference between the functions for stream ciphers
and for block ciphers, although they should be used quite differently by the application.

If your application uses more than one algorithm of the same type, you should probably
create an interface that is tailor-made for your needs, and then write a few lines of glue
code on top of Nettle.

By convention, for an algorithm named foo, the struct tag for the context struct is
foo_ctx, constants and functions uses prefixes like FOO_BLOCK_SIZE (a constant) and foo_
set_key (a function).

In all functions, strings are represented with an explicit length, of type size_t, and a
pointer of type uint8_t * or const uint8_t *. For functions that transform one string
to another, the argument order is length, destination pointer and source pointer. Source
and destination areas are usually of the same length. When they differ, e.g., for ccm_
encrypt_message, the length argument specifies the size of the destination area. Source
and destination pointers may be equal, so that you can process strings in place, but source
and destination areas must not overlap in any other way.

Many of the functions lack return value and can never fail. Those functions which can
fail, return one on success and zero on failure.

Chapter 4: Example 5

4 Example

A simple example program that reads a file from standard input and writes its SHA1 check-
sum on standard output should give the flavor of Nettle.

#include <stdio.h>
#include <stdlib.h>

#include <nettle/shal.h>
#define BUF_SIZE 1000

static void
display_hex(unsigned length, uint8_t *data)
{

unsigned 1i;

for (i = 0; i<length; i++)
printf ("%02x ", datalil);

printf ("\n");
}

int
main(int argc, char *xargv)
{
struct shal_ctx ctx;
uint8_t buffer [BUF_SIZE];
uint8_t digest[SHA1_DIGEST_SIZE];

shal_init(&ctx);
for (;;)
{
int done = fread(buffer, 1, sizeof(buffer), stdin);
shal_update(&ctx, done, buffer);
if (done < sizeof (buffer))
break;
}
if (ferror(stdin))
return EXIT_FAILURE;

shal_digest(&ctx, SHA1_DIGEST_SIZE, digest);

display_hex(SHA1_DIGEST_SIZE, digest);
return EXIT_SUCCESS;

Chapter 4: Example 6

On a typical Unix system, this program can be compiled and linked with the command
line

gcc sha-example.c -o sha-example -lnettle

Chapter 5: Linking 7

5 Linking

Nettle actually consists of two libraries, ‘libnettle’ and ‘libhogweed’. The ‘libhogweed’
library contains those functions of Nettle that uses bignum operations, and depends on
the GMP library. With this division, linking works the same for both static and dynamic
libraries.

If an application uses only the symmetric crypto algorithms of Nettle (i.e., block ciphers,
hash functions, and the like), it’s sufficient to link with -1nettle. If an application also
uses public-key algorithms, the recommended linker flags are -1hogweed -1nettle -1lgmp.
If the involved libraries are installed as dynamic libraries, it may be sufficient to link with
just —lhogweed, and the loader will resolve the dependencies automatically.

Chapter 6: Compatibility 8

6 Compatibility

When you write a program using the Nettle library, it’s desirable to have it work together
not only with exactly the same version of Nettle you had at hand, but with other current and
future versions. If a different version of Nettle is used at compile time, i.e., you recompile
it using the header and library files belonging to a different version, we talk about API
compatibility (for Application Programming Interface). If a different version of Nettle isn’t
used until link time, we talk about ABI compatibility (Application Binary Interface) or
binary compatibility. ABI compatibility matters mainly when using dynamic linking with
a shared library. E.g., a user has an executable linking at run-time with ‘libnettle.so’,
and then updates to a later version of the shared library, without updating or recompiling
the executable.

Nettle aims to provide backwards compatibility, i.e., a program written for a particular
version of the Nettle library should usually work fine with later version of the library. Note
that the opposite is not supported: The program should not be expected to work with older
versions of the Nettle library; and ABI breakage can be unobvious. E.g, the later version
may define a new library symbol, and let header files redefine an old API name as an alias
for the new symbol. If the later version ensures that the old symbol is still defined in the
library, this change is backwards compatible: A program compiled using headers from the
older version can be successfully linked with either version of the library. But if you compile
the same program using headers from the later version of the library, and attempt to link
with the older version, you’ll get an undefined reference to the new symbol.

API compatibility is rarely broken; exceptions are noted in the NEWS file. For example,
the key size argument to the function cast128_set_key was dropped in the Nettle-3.0
release, and all programs using that function had to be updated to work with the new
version.

ABI compatibility is broken occasionally. This is also noted in the NEWS file, and
the name of the shared library is updated to prevent accidental run-time linking with the
wrong version. All programs have to be recompiled before they can link with the new
version. Since names are different, multiple versions can be installed on the same system,
with a mix of programs linking to one version or the other.

Under some circumstances, it is possible to have a single program linking dynamically
with two binary incompatible versions of the Nettle library, thanks to the use of symbol
versioning. Consider a program calling functions in both Nettle and GnuTLS. For the direct
dependency on Nettle, the program is linked with a particular version of the Nettle shared
library. GnuTLS uses Nettle internally, but does not expose any Nettle data structures
or the like in its own ABI. In this situation, the GnuTLS shared library may link with
a different version of the Nettle library. Then both versions of the Nettle library will be
loaded into the program’s address space, and each reference to a symbol will be resolved to
the correct version.

Finally, some of Nettle’s symbols are internal. They carry a leading underscore, and are
not declared in installed header files. They can be used for local or experimental purposes,
but programs referring directly to those symbols get neither API nor ABI compatibility,
not even between minor versions.

Chapter 7: Reference 9

7 Reference
This chapter describes all the Nettle functions, grouped by family.

7.1 Hash functions

A cryptographic hash function is a function that takes variable size strings, and maps them
to strings of fixed, short, length. There are naturally lots of collisions, as there are more
possible 1MB files than 20 byte strings. But the function is constructed such that is hard to
find the collisions. More precisely, a cryptographic hash function H should have the following
properties:

One-way Given a hash value H(x) it is hard to find a string x that hashes to that value.

Collision-resistant
It is hard to find two different strings, x and y, such that H(x) = H(y).

Hash functions are useful as building blocks for digital signatures, message authentication
codes, pseudo random generators, association of unique ids to documents, and many other
things.

The most commonly used hash functions are MD5 and SHA1. Unfortunately, both
these fail the collision-resistance requirement; cryptologists have found ways to construct
colliding inputs. The recommended hash functions for new applications are SHA2 (with
main variants SHA256 and SHA512). At the time of this writing (Autumn 2015), SHA3
has recently been standardized, and the new SHA3 and other top SHA3 candidates may
also be reasonable alternatives.

7.1.1 Recommended hash functions

The following hash functions have no known weaknesses, and are suitable for new applica-
tions. The SHA2 family of hash functions were specified by NIST, intended as a replacement
for SHA1.

7.1.1.1 SHA256

SHA256 is a member of the SHA2 family. It outputs hash values of 256 bits, or 32 octets.

Nettle defines SHA256 in ‘<nettle/sha2.h>’.

struct sha256_ctx [Context struct]

SHA256_DIGEST_SIZE [Constant|
The size of a SHA256 digest, i.e. 32.

SHA256_BLOCK_SIZE [Constant|
The internal block size of SHA256. Useful for some special constructions, in particular
HMAC-SHA256.

void sha256_init (struct sha256_ctx *ctx) [Function]
Initialize the SHA256 state.

void sha256_update (struct sha256_ctx *ctx, size_t length, const [Function]
uint8-t *data)
Hash some more data.

Chapter 7: Reference 10

void sha256_digest (struct sha256_ctx *ctx, size_t length, uint8-t [Function]
*digest)
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than SHA256_DIGEST_SIZE, in which case only the first length octets
of the digest are written.

This function also resets the context in the same way as sha256_init.

Earlier versions of nettle defined SHA256 in the header file ‘<nettle/sha.h>’, which is
now deprecated, but kept for compatibility.

7.1.1.2 SHA224

SHAZ224 is a variant of SHA256, with a different initial state, and with the output trun-
cated to 224 bits, or 28 octets. Nettle defines SHA224 in ‘<nettle/sha2.h>’ (and in
‘<nettle/sha.h>’, for backwards compatibility).

struct sha224_ctx [Context struct]

SHA224 _DIGEST_SIZE [Constant|
The size of a SHA224 digest, i.e. 28.

SHA224 _BLOCK_SIZE [Constant|
The internal block size of SHA224. Useful for some special constructions, in particular

HMAC-SHA224.

void sha224_init (struct sha224_ctx *ctx) [Function]
Initialize the SHA224 state.

void sha224_update (struct sha224_ctx *ctx, size_-t length, const [Function]
uint8-t *data)
Hash some more data.

void sha224_digest (struct sha224_ctx *ctx, size-t length, uint8_t [Function]
*digest)
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than SHA224_DIGEST_SIZE, in which case only the first length octets
of the digest are written.

This function also resets the context in the same way as sha224_init.

7.1.1.3 SHA512

SHAb12 is a larger sibling to SHA256, with a very similar structure but with both the
output and the internal variables of twice the size. The internal variables are 64 bits rather
than 32, making it significantly slower on 32-bit computers. It outputs hash values of 512
bits, or 64 octets. Nettle defines SHA512 in ‘<nettle/sha2.h>’ (and in ‘<nettle/sha.h>’,
for backwards compatibility).

struct shab12_ctx [Context struct]

SHA512_DIGEST_SIZE [Constant|
The size of a SHA512 digest, i.e. 64.

Chapter 7: Reference 11

SHA512_BLOCK_SIZE [Constant)|
The internal block size of SHA512, 128. Useful for some special constructions, in
particular HMAC-SHA512.

void shab12_init (struct sha512_ctx *ctx) [Function]
Initialize the SHA512 state.

void shab12_update (struct sha512_ctx *ctx, size_t length, const [Function]
uint8-t *data)
Hash some more data.

void shab12_digest (struct sha512_ctx *ctx, size_t length, uint8_t [Function]
*digest)
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than SHA512_DIGEST_SIZE, in which case only the first length octets
of the digest are written.

This function also resets the context in the same way as sha512_init.

7.1.1.4 SHA384 and other variants of SHA512

Several variants of SHA512 have been defined, with a different initial state, and with the
output truncated to shorter length than 512 bits. Naming is a bit confused, these algorithms
are called SHA512-224, SHA512-256 and SHA384, for output sizes of 224, 256 and 384 bits,
respectively. Nettle defines these in ‘<nettle/sha2.h>’ (and in ‘<nettle/sha.h>’; for
backwards compatibility).

struct shab12_224_ctx [Context struct]
struct shab12_256_ctx [Context struct]
struct sha384_ctx [Context struct]

These context structs are all the same as shab12_ctx. They are defined as simple
preprocessor aliases, which may cause some problems if used as identifiers for other
purposes. So avoid doing that.

SHA512_224 DIGEST_SIZE [Constant)|

SHA512_256_DIGEST_SIZE [Constant)]

SHA384_DIGEST_SIZE [Constant|
The digest size for each variant, i.e., 28, 32, and 48, respectively.

SHA512_224 BLOCK_SIZE [Constant|

SHA512_256_BLOCK_SIZE [Constant)]

SHA384_BLOCK_SIZE [Constant)|

The internal block size, same as SHA512_BLOCK_SIZE, i.e., 128. Useful for some
special constructions, in particular HMAC-SHA384.

void shab12_224_init (struct sha512_224_ctx *ctx) [Function]
void shab12_256_init (struct sha512_256_ctx *ctx) [Function]
void sha384_init (struct sha384_ctx *ctx) [Function]

Initialize the context struct.

Chapter 7: Reference 12

void shab12_224_update (struct sha512_224_ctx *ctx, size_t length, [Function]
const uint8_-t *data)

void shab12_256_update (struct sha512_256_ctx *ctx, size_t length, [Function]
const uint8-t *data)

void sha384_update (struct sha384_ctx *ctx, size_t length, const [Function]

uint8_t *data)
Hash some more data. These are all aliases for shab512_update, which does the same
thing.

void shab12_224_digest (struct sha512_224_ctx *ctx, size_t length, [Function]
uint8_t *digest)
void shab12_256_digest (struct sha512_256_ctx *ctx, size_t length, [Function]
uint8_t *digest)
void sha384_digest (struct sha384_ctx *ctx, size_t length, uint8-t [Function]
*digest)
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than the specified digest size, in which case only the first length octets
of the digest are written.

These function also reset the context in the same way as the corresponding init
function.

7.1.1.5 SHA3-224

The SHA3 hash functions were specified by NIST in response to weaknesses in SHAT,
and doubts about SHA2 hash functions which structurally are very similar to SHAI.
SHA3 is a result of a competition, where the winner, also known as Keccak, was de-
signed by Guido Bertoni, Joan Daemen, Michaél Peeters and Gilles Van Assche. It is
structurally very different from all widely used earlier hash functions. Like SHA2, there
are several variants, with output sizes of 224, 256, 384 and 512 bits (28, 32, 48 and 64
octets, respectively). In August 2015, it was formally standardized by NIST, as FIPS 202,
http://dx.doi.org/10.6028/NIST.FIPS.202.

Note that the SHA3 implementation in earlier versions of Nettle was based on the spec-
ification at the time Keccak was announced as the winner of the competition, which is
incompatible with the final standard and hence with current versions of Nettle. The
‘nette/sha3.h’ defines a preprocessor symbol NETTLE_SHA3_FIPS202 to indicate confor-
mance with the standard.

NETTLE_SHA3_FIPS202 [Constant|
Defined to 1 in Nettle versions supporting FIPS 202. Undefined in earlier versions.

Nettle defines SHA3-224 in ‘<nettle/sha3.h>’.

struct sha3_224_ctx [Context struct]

SHA3_224_DIGEST_SIZE [Constant|
The size of a SHA3_224 digest, i.e., 28.

SHA3_224_BLOCK_SIZE [Constant|
The internal block size of SHA3_224.

Chapter 7: Reference 13

void sha3_224_init (struct sha3-224_ctx *ctx) [Function]
Initialize the SHA3-224 state.

void sha3_224_update (struct sha3-224_ctx *ctx, size_t length, const [Function]
uint8_t *data)
Hash some more data.

void sha3_224_digest (struct sha3-224_ctx *ctx, size_t length, [Function]
uint8_t *digest)
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than SHA3_224_DIGEST_SIZE, in which case only the first length
octets of the digest are written.

This function also resets the context.

7.1.1.6 SHA3-256

This is SHA3 with 256-bit output size, and possibly the most useful of the SHA3 hash
functions.

Nettle defines SHA3-256 in ‘<nettle/sha3.h>’.

struct sha3_256_ctx [Context struct]

SHA3_256_DIGEST_SIZE [Constant|
The size of a SHA3_256 digest, i.e., 32.

SHA3_256_BLOCK_SIZE [Constant|
The internal block size of SHA3_256.

void sha3_256_init (struct sha3-256_ctx *ctx) [Function]
Initialize the SHA3-256 state.

void sha3_256_update (struct sha3-256_ctx *ctx, size_t length, const [Function]
uint8_t *data)
Hash some more data.

void sha3_256_digest (struct sha3-256_ctx *ctx, size_t length, [Function]
uint8_t *digest)
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than SHA3_256_DIGEST_SIZE, in which case only the first length
octets of the digest are written.

This function also resets the context.

7.1.1.7 SHA3-384
This is SHA3 with 384-bit output size.

Nettle defines SHA3-384 in ‘<nettle/sha3.h>’.
struct sha3_384_ctx [Context struct]

SHA3_384_DIGEST_SIZE [Constant|
The size of a SHA3_384 digest, i.e., 48.

Chapter 7: Reference 14

SHA3_384_BLOCK_SIZE [Constant)|
The internal block size of SHA3_384.

void sha3_384_init (struct sha3_384_ctx *ctx) [Function]
Initialize the SHA3-384 state.

void sha3_384_update (struct sha3-384_ctx *ctx, size_t length, const [Function]
uint8-t *data)
Hash some more data.

void sha3_384_digest (struct sha3_384_ctx *ctx, size_t length, [Function]
uint8_t *digest)
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than SHA3_384_DIGEST_SIZE, in which case only the first length
octets of the digest are written.

This function also resets the context.

7.1.1.8 SHA3-512

This is SHA3 with 512-bit output size.
Nettle defines SHA3-512 in ‘<nettle/sha3.h>’.

struct sha3_512_ctx [Context struct]

SHA3_512_DIGEST_SIZE [Constant|
The size of a SHA3_512 digest, i.e. 64.

SHA3_512_BLOCK_SIZE [Constant|
The internal block size of SHA3_512.

void sha3_512_init (struct sha3_512_ctx *ctx) [Function]
Initialize the SHA3-512 state.

void sha3_512_update (struct sha3-512_ctx *ctx, size_t length, const [Function]
uint8_t *data)
Hash some more data.

void sha3_512_digest (struct sha3_-512_ctx *ctx, size_t length, [Function]
uint8_t *digest)
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than SHA3_512_DIGEST_SIZE, in which case only the first length
octets of the digest are written.

This function also resets the context.

7.1.1.9 SHAKE-256

In addition to those SHA-3 hash functions, Nettle also provides a SHA-3 extendable-output
function (XOF), SHAKE-256. Unlike SHA-3 hash functions, SHAKE can produce an output
digest of any desired length.

To use SHAKE256, the context struct, init and update functions are the same as for
SHA3-256. To get a SHAKE256 digest, the following function is used instead of sha3_256_
digest. For an output size of SHA3_256_DIGEST_SIZE, security is equivalent to SHA3-256

Chapter 7: Reference 15

(but the digest is different). Increasing output size further does not increase security in
terms of collision or preimage resistance. It can be seen as a built in pseudorandomness
generator.

void sha3_256_shake (struct shake256_ctx *ctx, size_t length, [Function]
uint8_t *digest)
Performs final processing and produces a SHAKE256 digest, writing it to digest.
length can be of arbitrary size.

This function also resets the context.
7.1.2 Miscellaneous hash functions

7.1.2.1 STREEBOG512

STREEBOG512 is a member of the Streebog (GOST R 34.11-2012) family. It outputs hash
values of 512 bits, or 64 octets. Nettle defines STREEBOGH12 in ‘<nettle/streebog.h>’.

struct streebogbl2_ctx [Context struct]

STREEBOG512_DIGEST_SIZE [Constant)]
The size of a STREEBOG512 digest, i.e. 64.

STREEBOG512_BLOCK_SIZE [Constant|
The internal block size of STREEBOG512. Useful for some special constructions, in
particular HMAC-STREEBOGb512.

void streebogbl2_init (struct streeboghl2_ctx *ctx) [Function]
Initialize the STREEBOGbH12 state.

void streebogbl2_update (struct streebog5l2_ctx *ctx, size_t [Function]
length, const uint8_t *data)
Hash some more data.

void streebogbl2_digest (struct streebogbl2_ctx *ctx, size_t [Function]
length, uint8_-t *digest)

Performs final processing and extracts the message digest, writing it to digest. length

may be smaller than STREEBOG512_DIGEST_SIZE, in which case only the first length
octets of the digest are written.

This function also resets the context in the same way as streebogb12_init.

7.1.2.2 STREEBOG256

STREEBOG256 is a variant of STREEBOG512, with a different initial state, and
with the output truncated to 256 bits, or 32 octets. Nettle defines STREEBOG256 in
‘<nettle/streebog.h>’.

struct streebog256_ctx [Context struct]

STREEBOG256_DIGEST_SIZE [Constant|
The size of a STREEBOG256 digest, i.e. 32.

Chapter 7: Reference 16

STREEB0OG256_BLOCK_SIZE [Constant)|
The internal block size of STREEBOG256. Useful for some special constructions, in
particular HMAC-STREEBOG256.

void streebog256_init (struct streebog256_ctx *ctx) [Function]
Initialize the STREEBOG256 state.

void streebog256_update (struct streebog256_ctx *ctx, size_t [Function]
length, const uint8_t *data)
Hash some more data.

void streebog256_digest (struct streebog256_ctx *ctx, size_t [Function]
length, uint8_-t *digest)

Performs final processing and extracts the message digest, writing it to digest. length

may be smaller than STREEBOG256_DIGEST_SIZE, in which case only the first length
octets of the digest are written.

This function also resets the context in the same way as streebog256_init.

7.1.3 Legacy hash functions

The hash functions in this section all have some known weaknesses, and should be avoided
for new applications. These hash functions are mainly useful for compatibility with old
applications and protocols. Some are still considered safe as building blocks for particu-
lar constructions, e.g., there seems to be no known attacks against HMAC-SHA1 or even
HMAC-MD5. In some important cases, use of a “legacy” hash function does not in itself
make the application insecure; if a known weakness is relevant depends on how the hash
function is used, and on the threat model.

7.1.3.1 MD5

MD5 is a message digest function constructed by Ronald Rivest, and described in RFC
1321. It outputs message digests of 128 bits, or 16 octets. Nettle defines MD5 in
‘nettle/md5.h>’.

struct md5_ctx [Context struct]

MD5_DIGEST_SIZE [Constant|
The size of an MD5 digest, i.e. 16.

MD5_BLOCK_SIZE [Constant)|
The internal block size of MD5. Useful for some special constructions, in particular
HMAC-MD?5.

void md5_init (struct md5_ctx *ctx) [Function]

Initialize the MD5 state.

void md5_update (struct mdi_ctx *ctx, size-t length, const uint8_t [Function]
*data)
Hash some more data.

Chapter 7: Reference 17

void md5_digest (struct md5_ctx *ctx, size_t length, uint8_t [Function]
*digest)
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than MD5_DIGEST_SIZE, in which case only the first length octets of
the digest are written.

This function also resets the context in the same way as md5_init.

The normal way to use MD5 is to call the functions in order: First md5_init, then
md5_update zero or more times, and finally md5_digest. After md5_digest, the context is
reset to its initial state, so you can start over calling md5_update to hash new data.

To start over, you can call md5_init at any time.

7.1.3.2 MD2

MD2 is another hash function of Ronald Rivest’s, described in RFC 1319. It outputs
message digests of 128 bits, or 16 octets. Nettle defines MD2 in ‘<nettle/md2.h>’.

struct md2_ctx [Context struct]

MD2_DIGEST_SIZE [Constant|
The size of an MD2 digest, i.e. 16.

MD2_BLOCK_SIZE [Constant|
The internal block size of MD2.

void md2_init (struct md2_ctx *ctx) [Function]
Initialize the MD2 state.

void md2_update (struct md2_ctx *ctx, size_t length, const uint8_t [Function]
*data)
Hash some more data.
void md2_digest (struct md2_ctx *ctx, size-t length, uint8_t [Function]
*digest)

Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than MD2_DIGEST_SIZE, in which case only the first length octets of
the digest are written.

This function also resets the context in the same way as md2_init.

7.1.3.3 MD4

MD4 is a predecessor of MD5, described in RFC 1320. Like MD5, it is constructed by
Ronald Rivest. It outputs message digests of 128 bits, or 16 octets. Nettle defines MD4
in ‘<nettle/md4.h>’. Use of MD4 is not recommended, but it is sometimes needed for
compatibility with existing applications and protocols.

struct md4_ctx [Context struct]

MD4_DIGEST_SIZE [Constant]
The size of an MD4 digest, i.e. 16.

Chapter 7: Reference 18

MD4_BLOCK_SIZE [Constant)|
The internal block size of MDA4.

void md4_init (struct md4_ctx *ctx) [Function]
Initialize the MD4 state.

void md4_update (struct md4_ctx *ctx, size_t length, const uint8_t [Function]
*data)
Hash some more data.
void md4_digest (struct md4_ctx *ctx, size_t length, uint8_t [Function]
*digest)

Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than MD4_DIGEST_SIZE, in which case only the first length octets of
the digest are written.

This function also resets the context in the same way as md4_init.

7.1.3.4 RIPEMD160

RIPEMDI160 is a hash function designed by Hans Dobbertin, Antoon Bosselaers, and Bart
Preneel, as a strengthened version of RIPEMD (which, like MD4 and MD5, fails the
collision-resistance requirement). It produces message digests of 160 bits, or 20 octets.
Nettle defined RIPEMD160 in ‘nettle/ripemd160.h’.

struct ripemd160_ctx [Context struct]

RIPEMD160_DIGEST_SIZE [Constant|
The size of a RIPEMD160 digest, i.e. 20.

RIPEMD160_BLOCK_SIZE [Constant)|
The internal block size of RIPEMD160.

void ripemd160_init (struct ripemdl160_ctx *ctx) [Function]
Initialize the RIPEMD160 state.

void ripemd160_update (struct ripemdl60_ctx *ctx, size_t length, [Function]
const uint8_-t *data)
Hash some more data.

void ripemd160_digest (struct ripemdl60-ctx *ctx, size_-t length, [Function]
uint8_t *digest)
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than RIPEMD160_DIGEST_SIZE, in which case only the first length
octets of the digest are written.

This function also resets the context in the same way as ripemd160_init.

7.1.3.5 SHA1

SHA1 is a hash function specified by NIST (The U.S. National Institute for Standards
and Technology). It outputs hash values of 160 bits, or 20 octets. Nettle defines SHA1 in
‘<nettle/shal.h>’ (and in ‘<nettle/sha.h>’, for backwards compatibility).

Chapter 7: Reference 19

struct shal_ctx [Context struct]

SHA1_DIGEST_SIZE [Constant)|
The size of a SHA1 digest, i.e. 20.

SHA1_BLOCK_SIZE [Constant)|
The internal block size of SHA1. Useful for some special constructions, in particular
HMAC-SHAL.

void shal_init (struct shal_ctx *ctx) [Function]

Initialize the SHA1 state.

void shal_update (struct shal_ctx *ctx, size_t length, const uint8_t [Function]
*data)
Hash some more data.
void shal_digest (struct shal_ctx *ctx, size-t length, uint8-t [Function]
*digest)

Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than SHA1_DIGEST_SIZE, in which case only the first length octets of
the digest are written.

This function also resets the context in the same way as shal_init.

7.1.3.6 GOSTHASH94 and GOSTHASH94CP

The GOST94 or GOST R 34.11-94 hash algorithm is a Soviet-era algorithm used in Rus-
sian government standards (see RFC 4357). It outputs message digests of 256 bits, or 32
octets. The standard itself does not fix the S-box used by the hash algorith, so there are two
popular variants (the testing S-box from the standard itself and the S-box defined by Cryp-
toPro company, see RFC 4357). Nettle provides support for the former S-box in the form of
GOSTHASH94 hash algorithm and for the latter in the form of GOSTHASH94CP hash algo-
rithm. Nettle defines GOSTHASH94 and GOSTHASH94CP in ‘<nettle/gosthash94.h>’.

struct gosthash94_ctx [Context struct]

GOSTHASH94 _DIGEST_SIZE [Constant]
The size of a GOSTHASH94 digest, i.e. 32.

GOSTHASH94_BLOCK_SIZE [Constant]

The internal block size of GOSTHASH94, i.e., 32.

void gosthash94_init (struct gosthash94_ctx *ctx) [Function]
Initialize the GOSTHASH94 state.

void gosthash94_update (struct gosthash94_ctx *ctx, size_t length, [Function]
const uint8-t *data)
Hash some more data.

void gosthash94_digest (struct gosthash94_ctx *ctx, size_t length, [Function]
uint8_t *digest)
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than GOSTHASH94_DIGEST_SIZE, in which case only the first length
octets of the digest are written.

Chapter 7: Reference 20

This function also resets the context in the same way as gosthash94_init.

struct gosthash94cp_ctx [Context struct]

GOSTHASH94CP_DIGEST_SIZE [Constant|
The size of a GOSTHASH94CP digest, i.e. 32.

GOSTHASH94CP_BLOCK_SIZE [Constant]
The internal block size of GOSTHASH94CP, i.e., 32.

void gosthash94cp_init (struct gosthash94cp_ctx *ctx) [Function]
Initialize the GOSTHASH94CP state.

void gosthash94cp_update (struct gosthash94cp_ctx *ctx, size_t [Function]

length, const uint8_t *data)

Hash some more data.

void gosthash94cp_digest (struct gosthash94cp_ctx *ctx, size_t [Function]

length, uint8_t *digest)

Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than GOSTHASH94CP_DIGEST_SIZE, in which case only the first length
octets of the digest are written.

This function also resets the context in the same way as gosthash94cp_init.

7.1.4 The struct nettle_hash abstraction

Nettle includes a struct including information about the supported hash functions. It is
defined in ‘<nettle/nettle-meta.h>’, and is used by Nettle’s implementation of HMAC
(see Section 7.5 [Keyed hash functions], page 60).

struct nettle_hash name context_size digest_size block_size init
update digest

[Meta struct|

The last three attributes are function pointers, of types nettle_hash_init_func *,
nettle_hash_update_func *, and nettle_hash_digest_func *. The first argument
to these functions is void * pointer to a context struct, which is of size context_size.

struct nettle_hash nettle_md2 [Constant Struct]
struct nettle_hash nettle_md4 [Constant Struct]
struct nettle_hash nettle_mdb [Constant Struct]
struct nettle_hash nettle_ripemd160 [Constant Struct]
struct nettle_hash nettle_shal [Constant Struct]
struct nettle_hash nettle_sha224 [Constant Struct]
struct nettle_hash nettle_sha256 [Constant Struct]
struct nettle_hash nettle_sha384 [Constant Struct]
struct nettle_hash nettle_shab12 [Constant Struct]
struct nettle_hash nettle_sha3_256 [Constant Struct]
struct nettle_hash nettle_gosthash94 [Constant Struct]
struct nettle_hash nettle_gosthash94cp [Constant Struct]

These are all the hash functions that Nettle implements.

Nettle also exports a list of all these hashes.

Chapter 7: Reference 21

const struct nettle_hash ** nettle_get_hashes (void) [Function]
Returns a NULL-terminated list of pointers to supported hash functions. This list
can be used to dynamically enumerate or search the supported algorithms.

nettle_hashes [Macro]
A macro expanding to a call to nettle_get_hashes, so that one could write, e.g.,
nettle_hashes[0]->name for the name of the first hash function on the list. In
earlier versions, this was not a macro but the actual array of pointers. However,
referring directly to the array makes the array size leak into the ABI in some cases.

7.2 Cipher functions

A cipher is a function that takes a message or plaintext and a secret key and transforms it
to a ciphertext. Given only the ciphertext, but not the key, it should be hard to find the
plaintext. Given matching pairs of plaintext and ciphertext, it should be hard to find the
key.

There are two main classes of ciphers: Block ciphers and stream ciphers.

A block cipher can process data only in fixed size chunks, called blocks. Typical block
sizes are 8 or 16 octets. To encrypt arbitrary messages, you usually have to pad it to an
integral number of blocks, split it into blocks, and then process each block. The simplest
way is to process one block at a time, independent of each other. That mode of operation
is called ECB, Electronic Code Book mode. However, using ECB is usually a bad idea. For
a start, plaintext blocks that are equal are transformed to ciphertext blocks that are equal,
that leaks information about the plaintext. Usually you should apply the cipher is some
“feedback mode”, CBC (Cipher Block Chaining) and CTR (Counter mode) being two of
of the most popular. See See Section 7.3 [Cipher modes|, page 37, for information on how
to apply CBC and CTR with Nettle.

A stream cipher can be used for messages of arbitrary length. A typical stream cipher
is a keyed pseudo-random generator. To encrypt a plaintext message of n octets, you key
the generator, generate n octets of pseudo-random data, and XOR it with the plaintext.
To decrypt, regenerate the same stream using the key, XOR it to the ciphertext, and the
plaintext is recovered.

Caution: The first rule for this kind of cipher is the same as for a One Time Pad: never
ever use the same key twice.

A common misconception is that encryption, by itself, implies authentication. Say that
you and a friend share a secret key, and you receive an encrypted message. You apply the
key, and get a plaintext message that makes sense to you. Can you then be sure that it really
was your friend that wrote the message you’re reading? The answer is no. For example, if
you were using a block cipher in ECB mode, an attacker may pick up the message on its
way, and reorder, delete or repeat some of the blocks. Even if the attacker can’t decrypt
the message, he can change it so that you are not reading the same message as your friend
wrote. If you are using a block cipher in CBC mode rather than ECB, or are using a stream
cipher, the possibilities for this sort of attack are different, but the attacker can still make
predictable changes to the message.

It is recommended to always use an authentication mechanism in addition to encrypting

the messages. Popular choices are Message Authentication Codes like HMAC-SHA1 (see
Section 7.5 [Keyed hash functions], page 60), or digital signatures like RSA.

Chapter 7: Reference 22

Some ciphers have so called “weak keys”, keys that results in undesirable structure after
the key setup processing, and should be avoided. In Nettle, most key setup functions have
no return value, but for ciphers with weak keys, the return value indicates whether or not
the given key is weak. For good keys, key setup returns 1, and for weak keys, it returns O.
When possible, avoid algorithms that have weak keys. There are several good ciphers that
don’t have any weak keys.

To encrypt a message, you first initialize a cipher context for encryption or decryption
with a particular key. You then use the context to process plaintext or ciphertext messages.
The initialization is known as key setup. With Nettle, it is recommended to use each context
struct for only one direction, even if some of the ciphers use a single key setup function that
can be used for both encryption and decryption.

7.2.1 AES

AES is a block cipher, specified by NIST as a replacement for the older DES standard. The
standard is the result of a competition between cipher designers. The winning design, also
known as RIJNDAEL, was constructed by Joan Daemen and Vincent Rijnmen.

Like all the AES candidates, the winning design uses a block size of 128 bits, or 16 octets,
and three possible key-size, 128, 192 and 256 bits (16, 24 and 32 octets) being the allowed
key sizes. It does not have any weak keys. Nettle defines AES in ‘<nettle/aes.h>’, and
there is one context struct for each key size. (Earlier versions of Nettle used a single context
struct, struct aes_ctx, for all key sizes. This interface kept for backwards compatibility).

struct aesl128_ctx [Context struct]
struct aes192_ctx [Context struct]
struct aes256_ctx [Context struct]

[]

struct aes_ctx Context struct

Alternative struct, for the old AES interface.

AES_BLOCK_SIZE [Constant)|
The AES block-size, 16.

AES128_KEY_SIZE [Constant)]
AES192_KEY_SIZE [Constant]
AES256_KEY_SIZE [Constant|
[]
[]
[]

AES_MIN_KEY_SIZE Constant

AES_MAX_KEY_SIZE Constant

AES_KEY_SIZE Constant

Default AES key size, 32.

void aesl128_set_encrypt_key (struct aes128_ctx *ctx, const uint8_t [Function]
*key)

void aes128_set_decrypt_key (struct aesl28_ctx *ctx, const uint8_t [Function]
*key)

void aesl192_set_encrypt_key (struct aes192_ctx *ctx, const uint8_t [Function]
*key)

void aes192_set_decrypt_key (struct aesl92_ctx *ctx, const uint8_t [Function]

*key)

Chapter 7: Reference

void aes256_set_encrypt_key (struct aes256_ctx *ctx, const uint8_t
“key)

void aes256_set_decrypt_key (struct aes256_ctx *ctx, const uint8_t
*key)

void aes_set_encrypt_key (struct aes_ctx *ctx, size_t length, const
uint8_t *key)

void aes_set_decrypt_key (struct aes_ctx *ctx, size_t length, const
uint8_t *key)

Initialize the cipher, for encryption or decryption, respectively.

void aesl128_invert_key (struct aes128_ctx *dst, const struct
aes128_ctx *src)

void aesl192_invert_key (struct aesl92_ctx *dst, const struct
aes192_ctx *src)

void aes256_invert_key (struct aes256_ctx *dst, const struct
aes256_ctx *src)

void aes_invert_key (struct aes_ctx *dst, const struct aes_ctx *src)

23

[Function]
[Function]
[Function]

[Function]

[Function]
[Function]
[Function]

[Function]

Given a context src initialized for encryption, initializes the context struct dst for
decryption, using the same key. If the same context struct is passed for both src and
dst, it is converted in place. These functions are mainly useful for applications which
needs to both encrypt and decrypt using the same key, because calling, e.g., aes128_
set_encrypt_key and aes128_invert_key, is more efficient than calling aes128_

set_encrypt_key and aes128_set_decrypt_key.

void aesl128_encrypt (struct aes128_ctx *ctx, size_t length, uint8_t
*dst, const uint8_t *src)

void aesl192_encrypt (struct aesl192_ctx *ctx, size_t length, uint8_t
*dst, const uint8_t *src)

void aes256_encrypt (struct aes256_ctx *ctx, size_t length, uint8_t
*dst, const uint8_t *src)

void aes_encrypt (struct aes_ctx *ctx, size_t length, uint8_t *dst,
const uint8-t *src)

[Function]
[Function]
[Function]

[Function]

Encryption function. length must be an integral multiple of the block size. If it is
more than one block, the data is processed in ECB mode. src and dst may be equal,

but they must not overlap in any other way.

void aesl128_decrypt (struct aes128_ctx *ctx, size_t length, uint8_t
*dst, const uint8_t *src)

void aesl192_decrypt (struct aes192_ctx *ctx, size_t length, uint8_t
*dst, const uint8-t *src)

void aes256_decrypt (struct aes256_ctx *ctx, size_t length, uint8_t
*dst, const uint8-t *src)

void aes_decrypt (struct aes_ctx *ctx, size_t length, uint8_t *dst,
const uint8-t *src)

Analogous to the encryption functions above.

[Function]
[Function]
[Function]

[Function]

Chapter 7: Reference 24

7.2.2 ARCFOUR

ARCFOUR is a stream cipher, also known under the trade marked name RC4, and it
is one of the fastest ciphers around. A problem is that the key setup of ARCFOUR is
quite weak, you should never use keys with structure, keys that are ordinary passwords,
or sequences of keys like “secret:1”, “secret:2”, If you have keys that don’t look like
random bit strings, and you want to use ARCFOUR, always hash the key before feeding it
to ARCFOUR. Furthermore, the initial bytes of the generated key stream leak information
about the key; for this reason, it is recommended to discard the first 512 bytes of the key
stream.

/* A more robust key setup function for ARCFOUR */
void
arcfour_set_key_hashed(struct arcfour_ctx *ctx,
size_t length, const uint8_t xkey)

{

struct sha2b56_ctx hash;

uint8_t digest [SHA256_DIGEST_SIZE];

uint8_t buffer[0x200];

sha256_init (&hash) ;
sha256_update (&hash, length, key);
sha256_digest (&hash, SHA256_DIGEST_SIZE, digest);

arcfour_set_key(ctx, SHA256_DIGEST_SIZE, digest);
arcfour_crypt(ctx, sizeof(buffer), buffer, buffer);

}
Nettle defines ARCFOUR in ‘<nettle/arcfour.h>’.

struct arcfour_ctx [Context struct]

ARCFOUR_MIN_KEY_SIZE [Constant|
Minimum key size, 1.

ARCFOUR_MAX_KEY_SIZE [Constant)]
Maximum key size, 256.

ARCFOUR_KEY_SIZE [Constant)|
Default ARCFOUR key size, 16.

void arcfour_set_key (struct arcfour_ctx *ctx, size_t length, const [Function]
uint8_t *key)
Initialize the cipher. The same function is used for both encryption and decryption.

void arcfour_crypt (struct arcfour_ctx *ctx, size_t length, uint8_t [Function]
*dst, const uint8_t *src)
Encrypt some data. The same function is used for both encryption and decryption.
Unlike the block ciphers, this function modifies the context, so you can split the data
into arbitrary chunks and encrypt them one after another. The result is the same as
if you had called arcfour_crypt only once with all the data.

Chapter 7: Reference 25

7.2.3 ARCTWO

ARCTWO (also known as the trade marked name RC2) is a block cipher specified in RFC
2268. Nettle also include a variation of the ARCTWO set key operation that lack one
step, to be compatible with the reverse engineered RC2 cipher description, as described in
a Usenet post to sci.crypt by Peter Gutmann.

ARCTWO uses a block size of 64 bits, and variable key-size ranging from 1 to 128
octets. Besides the key, ARCTWO also has a second parameter to key setup, the number
of effective key bits, ekb. This parameter can be used to artificially reduce the key size.
In practice, ekb is usually set equal to the input key size. Nettle defines ARCTWO in
‘<nettle/arctwo.h>’.

We do not recommend the use of ARCTWO; the Nettle implementation is provided
primarily for interoperability with existing applications and standards.

struct arctwo_ctx [Context struct]
ARCTWO_BLOCK_SIZE [Constant]
The ARCTWO block-size, 8.
ARCTWO_MIN_KEY_SIZE [Constant|
ARCTWO_MAX_KEY_SIZE [Constant)|
ARCTWO_KEY_SIZE [Constant)|
Default ARCTWO key size, 8.
void arctwo_set_key_ekb (struct arctwo_ctx *ctx, size_-t length, [Function]
const uint8-t *key, unsigned ekb)
void arctwo_set_key (struct arctwo_ctx *ctx, size_t length, const [Function]
uint8_t *key)
void arctwo_set_key_gutmann (struct arctwo_ctx *ctx, size_t [Function]

length, const uint8_t *key)
Initialize the cipher. The same function is used for both encryption and decryption.
The first function is the most general one, which lets you provide both the variable
size key, and the desired effective key size (in bits). The maximum value for ekb is
1024, and for convenience, ekb = 0 has the same effect as ekb = 1024.

arctwo_set_key(ctx, length, key) is equivalent to arctwo_set_key_ekb(ctx,
length, key, 8*length), and arctwo_set_key_gutmann(ctx, length, key) is
equivalent to arctwo_set_key_ekb(ctx, length, key, 1024)

void arctwo_encrypt (struct arctwo_ctx *ctx, size_t length, uint8_t [Function]
*dst, const uint8_t *src)
Encryption function. length must be an integral multiple of the block size. If it is
more than one block, the data is processed in ECB mode. src and dst may be equal,
but they must not overlap in any other way.

void arctwo_decrypt (struct arctwo_ctx *ctx, size_t length, uint8_t [Function]
*dst, const uint8-t *src)
Analogous to arctwo_encrypt

Chapter 7: Reference 26

7.2.4 BLOWFISH

BLOWFISH is a block cipher designed by Bruce Schneier. It uses a block size of 64 bits
(8 octets), and a variable key size, up to 448 bits. It has some weak keys. Nettle defines
BLOWFISH in ‘<nettle/blowfish.h>’.

struct blowfish_ctx [Context struct]

BLOWFISH_BLOCK_SIZE [Constant|
The BLOWFISH block-size, 8.

BLOWFISH_MIN_KEY_SIZE [Constant|
Minimum BLOWFISH key size, 8.

BLOWFISH_MAX_KEY_SIZE [Constant|
Maximum BLOWFISH key size, 56.

BLOWFISH_KEY_SIZE [Constant|
Default BLOWFISH key size, 16.

int blowfish_set_key (struct blowfish_ctx *ctx, size_t length, const [Function]
uint8_t *key)
Initialize the cipher. The same function is used for both encryption and decryption.
Checks for weak keys, returning 1 for good keys and 0 for weak keys. Applications
that don’t care about weak keys can ignore the return value.

blowfish_encrypt or blowfish_decrypt with a weak key will crash with an assert
violation.

void blowfish_encrypt (struct blowfish_ctx *ctx, size-t length, [Function]
uint8-t *dst, const uint8-t *src)
Encryption function. length must be an integral multiple of the block size. If it is
more than one block, the data is processed in ECB mode. src and dst may be equal,
but they must not overlap in any other way.

void blowfish_decrypt (struct blowfish_ctx *ctx, size_t length, [Function]
uint8_t *dst, const uint8-t *src)
Analogous to blowfish_encrypt

int blowfish_bcrypt_hash (char *dst, size_t lenkey, const char [Function]
*key, size-t lenscheme, const char *scheme, int log2rounds, const uint8-t
*salt)

Compute the berypt password hash. The function will return 0 if the hash cannot be
computed due to invalid input. The function will return 1 and store the computed
hash in the array pointed to by dst. The hash is computed based on the chosen
scheme, number of rounds log2rounds and specified salt.

dst must point to a character array of at least BLOWFISH_BCRYPT_HASH_SIZE bytes.
key contains the plaintext password string of size lenkey.

scheme is of size lenscheme and contains either just the chosen scheme (valid schemes
are: 2a, 2b, 2x or 2y), or (the prefix of) an existing hashed password (typically
$2b$10$. . .).

Chapter 7: Reference 27

log2rounds contains the log2 of the number of encryption rounds that must be used
to compute the hash. If it is =1 the value will be extracted from scheme.

salt should point to an array of BLOWFISH_BCRYPT_BINSALT_SIZE random bytes to
be used to perturb the hash computation. If it is NULL the salt will be extracted from
scheme.

Sample code to generate a berypt hash:

char cleartxtpassword[] = "ExamplePassword";
char scheme[] = "2b";
uint8_t salt[BLOWFISH_BCRYPT_BINSALT_SIZE];

/* Make sure that salt is filled with random bytes */

char hashedresult[BLOWFISH_BCRYPT_HASH_SIZE];
int result = blowfish_bcrypt(hashedresult,
sizeof (cleartxtpassword) - 1, cleartxtpassword,l]]
sizeof (scheme) - 1, scheme, 10, salt);
if (result)
printf ("%s\n", hashedresult);

int blowfish_bcrypt_verify (size_t lenkey, const char *key, size_t [Function]
lenhashed, const char *hashed)
Verifies the berypt password hash against the supplied plaintext password. The func-
tion will return O if the password does not match. The function will return 1 if the
password matches.

key contains the plaintext password string of size lenkey.
hashed contains the hashed string of size lenhashed to compare with.
Sample code to verify a berypt hash:

char cleartxtpassword[] = "ExamplePassword";
char existinghashed[] =
"$2y$" /* Hash algorithm version */
"10" /* 2710 hash rounds (strength) */
"$" /* separator */
"1b21Pgo4XumibnJGN3r3s0" /* base64 encoded 16-byte salt */|j
"u7wETxNfYDK1AxZffJDCJdVEFTAyevu"; /* Hashedpart */
if (blowfish_bcrypt_verify(sizeof (cleartxtpassword) - 1, cleartxtpassword,|]
sizeof (existinghashed) - 1, existinghashed))f}
printf ("Password is correct.");
else
printf ("Password is incorrect.");

7.2.5 Camellia

Camellia is a block cipher developed by Mitsubishi and Nippon Telegraph and Telephone
Corporation, described in RFC3713. It is recommended by some Japanese and European
authorities as an alternative to AES, and it is one of the selected algorithms in the New
European Schemes for Signatures, Integrity and Encryption (NESSIE) project. The al-
gorithm is patented. The implementation in Nettle is derived from the implementation

Chapter 7: Reference 28

released by NTT under the GNU LGPL (v2.1 or later), and relies on the implicit patent
license of the LGPL. There is also a statement of royalty-free licensing for Camellia at
http://www.ntt.co.jp/news/news01e/0104/010417 .html, but this statement has some
limitations which seem problematic for free software.

Camellia uses a the same block size and key sizes as AES: The block size is 128 bits
(16 octets), and the supported key sizes are 128, 192, and 256 bits. The variants with
192 and 256 bit keys are identical, except for the key setup. Nettle defines Camellia in
‘nettle/camellia.h>’, and there is one context struct for each key size. (Earlier versions
of Nettle used a single context struct, struct camellia_ctx, for all key sizes. This interface

kept for backwards compatibility).

struct camellial28_ctx
struct camellial92_ctx
struct camellia2b6_ctx

[Context struct]
[Context struct]
[Context struct]

Contexts structs. Actually, camellial192_ctx is an alias for camellia256_ctx.

struct camellia_ctx
Alternative struct, for the old Camellia interface.

[Context struct]

CAMELLIA_BLOCK_SIZE [Constant|
The CAMELLIA block-size, 16.

CAMELLTIA128_KEY_SIZE [Constant|

CAMELLIA192_KEY_SIZE [Constant|

CAMELLIA256_KEY_SIZE [Constant)|

CAMELLTA_MIN_KEY_SIZE [Constant)]

CAMELLTA_MAX_KEY_SIZE [Constant|

CAMELLIA_KEY_SIZE [Constant|

Default CAMELLIA key size, 32.

void camellial28_set_encrypt_key (struct camellial28_ctx *ctx, [Function]
const uint8_t *key)

void camellial28_set_decrypt_key (struct camellial28_ctx *ctx, [Function]
const uint8_t *key)

void camellial92_set_encrypt_key (struct camellial92_ctx *ctx, [Function]
const uint8-t *key)

void camellial92_set_decrypt_key (struct camellial92_ctx *ctx, [Function]
const uint8_t *key)

void camellia256_set_encrypt_key (struct camellia256_ctx *ctx, [Function]
const uint8-t *key)

void camellia256_set_decrypt_key (struct camellia256_ctx *ctx, [Function]
const uint8-t *key)

void camellia_set_encrypt_key (struct camellia_ctx *ctx, size_t [Function]
length, const uint8_t *key)

void camellia_set_decrypt_key (struct camellia_ctx *ctx, size_t [Function]

length, const uint8_t *key)
Initialize the cipher, for encryption or decryption, respectively.

Chapter 7: Reference 29

void camellial28_invert_key (struct camellial28_ctx *dst, const [Function]
struct camellial28_ctx *src)

void camellial92_invert_key (struct camellial92_ctx *dst, const [Function]
struct camellial92_ctx *src)

void camellia256_invert_key (struct camellia256_ctx *dst, const [Function]
struct camellia256_ctx *src)

void camellia_invert_key (struct camellia_ctx *dst, const struct [Function]

camellia_ctx *src)
Given a context src initialized for encryption, initializes the context struct dst for
decryption, using the same key. If the same context struct is passed for both src and
dst, it is converted in place. These functions are mainly useful for applications which
needs to both encrypt and decrypt using the same key.

void camellial28_crypt (struct camellial28_ctx *ctx, size_t length, [Function]
uint8_t *dst, const uint8_t *src)

void camellial92_crypt (struct camellial92_ctx *ctx, size_t length, [Function]
uint8_t *dst, const uint8_t *src)

void camellia256_crypt (struct camellia256_ctx *ctx, size-t length, [Function]
uint8_t *dst, const uint8_t *src)

void camellia_crypt (struct camellia_ctx *ctx, size_t length, uint8-t [Function]

*dst, const uint8_t *src)
The same function is used for both encryption and decryption. length must be an
integral multiple of the block size. If it is more than one block, the data is processed
in ECB mode. src and dst may be equal, but they must not overlap in any other
way.

7.2.6 CAST128

CAST-128 is a block cipher, specified in RFC 2144. It uses a 64 bit (8 octets) block size, and
a key size of 128 bits. It is possible, but discouraged, to use the same algorithm with shorter
keys. Nettle refers to the variant with variable key size as CAST-5. Keys for CAST-5 are
zero padded to 128 bits, and with very short keys, less than 80 bits, encryption also uses
fewer rounds than CAST128. Nettle defines cast128 in ‘<nettle/cast128.h>’.

struct cast128_ctx [Context struct]

CAST128_BLOCK_SIZE [Constant)]
The CAST128 block-size, 8.

CAST128_KEY_SIZE [Constant)|
The CAST128 key size, 16.

CAST5_MIN_KEY_SIZE [Constant|
Minimum CAST5 key size, 5.

CAST5_MAX_KEY_SIZE [Constant]
Maximum CAST5 key size, 16. With 16 octets key (128 bits), CAST-5 is the same
as CAST-128.

void cast128_set_key (struct cast128_ctx *ctx, const uint8-t *key) [Function]

Initialize the cipher. The same function is used for both encryption and decryption.

Chapter 7: Reference 30

void cast128_encrypt (struct cast128_ctx *ctx, size_t length, uint8_-t [Function]
*dst, const uint8-t *src)
Encryption function. length must be an integral multiple of the block size. If it is
more than one block, the data is processed in ECB mode. src and dst may be equal,
but they must not overlap in any other way.

void cast128_decrypt (struct cast128_ctx *ctx, size_t length, uint8-t [Function]
*dst, const uint8-t *src)
Analogous to cast128_encrypt

void castb_set_key (struct cast128_ctx *ctx, size_t length, const [Function]
uint8_t *key)
Initialize the cipher. This variant of the key setup takes the key size as argument.
The same function is used for both encryption and decryption.

7.2.7 ChaCha

ChaCha is a variant of the stream cipher Salsa20, also designed by D. J. Bernstein. For
more information on Salsa20, see below. Nettle defines ChaCha in ‘<nettle/chacha.h>’.

struct chacha_ctx [Context struct]

CHACHA_KEY_SIZE [Constant|
ChaCha key size, 32.

CHACHA_BLOCK_SIZE [Constant|
ChaCha block size, 64.

CHACHA_NONCE_SIZE [Constant]
Size of the nonce, 8.

CHACHA_COUNTER_SIZE [Constant|

Size of the counter, 8.

void chacha_set_key (struct chacha_ctx *ctx, const uint8_t *key) [Function]
Initialize the cipher. The same function is used for both encryption and decryption.
Before using the cipher, you must also call chacha_set_nonce, see below.

void chacha_set_nonce (struct chacha_ctx *ctx, const uint8-t [Function]
*nonce)
Sets the nonce. It is always of size CHACHA_NONCE_SIZE, 8 octets. This function also
initializes the block counter, setting it to zero.

void chacha_set_counter (struct chacha_ctx *ctx, const uint8_t [Function]
*counter)
Sets the block counter. It is always of size CHACHA_COUNTER_SIZE, 8 octets. This is
rarely needed since chacha_set_nonce initializes the block counter to zero. When it
is still necessary, this function must be called after chacha_set_nonce.

void chacha_crypt (struct chacha_ctx *ctx, size_t length, uint8_t [Function]
*dst, const uint8_t *src)
Encrypts or decrypts the data of a message, using ChaCha. When a message is
encrypted using a sequence of calls to chacha_crypt, all but the last call must use a
length that is a multiple of CHACHA_BLOCK_SIZE.

Chapter 7: Reference 31

7.2.7.1 32-bit counter variant

While the original paper uses 64-bit counter value, the variant defined in RFC 8439 uses 32-
bit counter value. This variant is particularly useful for see Section 7.4.4 [ChaCha-Poly1305],
page 57 AEAD construction, which supports 12-octet nonces.

CHACHA_NONCE96_SIZE [Constant|
Size of the nonce, 12.
CHACHA_COUNTER32_SIZE [Constant|
Size of the counter, 4.
void chacha_set_nonce96 (struct chacha_ctx *ctx, const uint8_t [Function]
*nonce)

Sets the nonce. This is similar to the above chacha_set_nonce, but the input is
always of size CHACHA_NONCE96_SIZE, 12 octets.

void chacha_set_counter32 (struct chacha_ctx *ctx, const uint8_t [Function]
*counter)
Sets the block counter. This is similar to the above chacha_set_counter, but the
input is always of size CHACHA_COUNTER32_SIZE, 4 octets.

void chacha_crypt32 (struct chacha_ctx *ctx, size_t length, uint8_t [Function]
*dst, const uint8_t *src)
Encrypts or decrypts the data of a message, using ChaCha. This is similar to the
above chacha_crypt, but it assumes the internal counter value is 32-bit long and the
nonce is 96-bit long.

7.2.8 DES

DES is the old Data Encryption Standard, specified by NIST. It uses a block size of 64 bits
(8 octets), and a key size of 56 bits. However, the key bits are distributed over 8 octets,
where the least significant bit of each octet may be used for parity. A common way to use
DES is to generate 8 random octets in some way, then set the least significant bit of each
octet to get odd parity, and initialize DES with the resulting key.

The key size of DES is so small that keys can be found by brute force, using specialized
hardware or lots of ordinary work stations in parallel. One shouldn’t be using plain DES
at all today, if one uses DES at all one should be using “triple DES”, see DES3 below.

DES also has some weak keys. Nettle defines DES in ‘<nettle/des.h>’.

struct des_ctx [Context struct]

DES_BLOCK_SIZE [Constant]
The DES block-size, 8.

DES_KEY_SIZE [Constant)|
DES key size, 8.

int des_set_key (struct des_ctx *ctx, const uint8_t *key) [Function]
Initialize the cipher. The same function is used for both encryption and decryption.
Parity bits are ignored. Checks for weak keys, returning 1 for good keys and 0 for
weak keys. Applications that don’t care about weak keys can ignore the return value.

Chapter 7: Reference 32

void des_encrypt (struct des_ctx *ctx, size_-t length, uint8_t *dst, [Function]
const uint8_t *src)
Encryption function. length must be an integral multiple of the block size. If it is
more than one block, the data is processed in ECB mode. src and dst may be equal,
but they must not overlap in any other way.

void des_decrypt (struct des_ctx *ctx, size_t length, uint8_t *dst, [Function]
const uint8-t *src)
Analogous to des_encrypt

int des_check_parity (size-t length, const uintS-t *key); [Function]
Checks that the given key has correct, odd, parity. Returns 1 for correct parity, and
0 for bad parity.

void des_fix_parity (size_t length, uint8_t *dst, const uint8_t [Function]
*src)
Adjusts the parity bits to match DES’s requirements. You need this function if you
have created a random-looking string by a key agreement protocol, and want to use
it as a DES key. dst and src may be equal.

7.2.9 DES3

The inadequate key size of DES has already been mentioned. One way to increase the key
size is to pipe together several DES boxes with independent keys. It turns out that using
two DES ciphers is not as secure as one might think, even if the key size of the combination
is a respectable 112 bits.

The standard way to increase DES’s key size is to use three DES boxes. The mode of
operation is a little peculiar: the middle DES box is wired in the reverse direction. To
encrypt a block with DES3, you encrypt it using the first 56 bits of the key, then decrypt
it using the middle 56 bits of the key, and finally encrypt it again using the last 56 bits of
the key. This is known as “ede” triple-DES, for “encrypt-decrypt-encrypt”.

The “ede” construction provides some backward compatibility, as you get plain single
DES simply by feeding the same key to all three boxes. That should help keeping down the
gate count, and the price, of hardware circuits implementing both plain DES and DES3.

DES3 has a key size of 168 bits, but just like plain DES, useless parity bits are inserted,
so that keys are represented as 24 octets (192 bits). As a 112 bit key is large enough to make
brute force attacks impractical, some applications uses a “two-key” variant of triple-DES.
In this mode, the same key bits are used for the first and the last DES box in the pipe,
while the middle box is keyed independently. The two-key variant is believed to be secure,
i.e. there are no known attacks significantly better than brute force.

Naturally, it’s simple to implement triple-DES on top of Nettle’s DES functions. Nettle
includes an implementation of three-key “ede” triple-DES, it is defined in the same place
as plain DES, ‘<nettle/des.h>’.

struct des3_ctx [Context struct]

DES3_BLOCK_SIZE [Constant|
The DES3 block-size is the same as DES_BLOCK_SIZE, 8.

Chapter 7: Reference 33

DES3_KEY_SIZE [Constant)|
DES key size, 24.

int des3_set_key (struct des3-ctx *ctx, const uint8_t *key) [Function]
Initialize the cipher. The same function is used for both encryption and decryption.
Parity bits are ignored. Checks for weak keys, returning 1 if all three keys are good
keys, and 0 if one or more key is weak. Applications that don’t care about weak keys
can ignore the return value.

For random-looking strings, you can use des_fix_parity to adjust the parity bits before
calling des3_set_key.

void des3_encrypt (struct des3_ctx *ctx, size_t length, uint8-t *dst, [Function]
const uint8_t *src)
Encryption function. length must be an integral multiple of the block size. If it is
more than one block, the data is processed in ECB mode. src and dst may be equal,
but they must not overlap in any other way.

void des3_decrypt (struct des3_ctx *ctx, size_t length, uint8_t *dst, [Function]
const uint8-t *src)
Analogous to des_encrypt

7.2.10 Salsa20

Salsa20 is a fairly recent stream cipher designed by D. J. Bernstein. It is built on the
observation that a cryptographic hash function can be used for encryption: Form the hash
input from the secret key and a counter, xor the hash output and the first block of the
plaintext, then increment the counter to process the next block (similar to CTR mode, see
see Section 7.3.2 [CTR], page 38). Bernstein defined an encryption algorithm, Snuffle, in
this way to ridicule United States export restrictions which treated hash functions as nice
and harmless, but ciphers as dangerous munitions.

Salsa20 uses the same idea, but with a new specialized hash function to mix key, block
counter, and a couple of constants. It’s also designed for speed; on x86_64, it is currently
the fastest cipher offered by nettle. It uses a block size of 512 bits (64 octets) and there are
two specified key sizes, 128 and 256 bits (16 and 32 octets).

Caution: The hash function used in Salsa20 is not directly applicable for use as a general
hash function. It’s not collision resistant if arbitrary inputs are allowed, and furthermore,
the input and output is of fixed size.

When using Salsa20 to process a message, one specifies both a key and a nonce, the
latter playing a similar role to the initialization vector (IV) used with CBC or CTR mode.
One can use the same key for several messages, provided one uses a unique random iv for
each message. The iv is 64 bits (8 octets). The block counter is initialized to zero for each
message, and is also 64 bits (8 octets). Nettle defines Salsa20 in ‘<nettle/salsa20.h>’.

struct salsa20_ctx [Context struct]
SALSA20_128_KEY_SIZE [Constant)|
SALSA20_256_KEY_SIZE [Constant|

The two supported key sizes, 16 and 32 octets.

Chapter 7: Reference 34

SALSA20_KEY_SIZE [Constant)|
Recommended key size, 32.

SALSA20_BLOCK_SIZE [Constant)|
Salsa20 block size, 64.

SALSA20_NONCE_SIZE [Constant)|
Size of the nonce, 8.
void salsa20_128_set_key (struct salsa20_ctx *ctx, const uint8_t [Function]
*key)
void salsa20_256_set_key (struct salsa20_ctx *ctx, const uint8_t [Function]
*key)
void salsa20_set_key (struct salsa20_ctx *ctx, size_t length, const [Function]

uint8_t *key)
Initialize the cipher. The same function is used for both encryption and decryption.
salsa20_128_set_key and salsa20_128_set_key use a fix key size each, 16 and
32 octets, respectively. The function salsa20_set_key is provided for backwards
compatibility, and the length argument must be either 16 or 32. Before using the
cipher, you must also call salsa20_set_nonce, see below.

void salsa20_set_nonce (struct salsa20-ctx *ctx, const uint8_t [Function]
*nonce)
Sets the nonce. It is always of size SALSA20_NONCE_SIZE, 8 octets. This function also
initializes the block counter, setting it to zero.

void salsa20_crypt (struct salsa20_ctx *ctx, size_t length, uint8_t [Function]
*dst, const uint8_t *src)
Encrypts or decrypts the data of a message, using salsa20. When a message is en-
crypted using a sequence of calls to salsa20_crypt, all but the last call must use a
length that is a multiple of SALSA20_BLOCK_SIZE.

The full salsa20 cipher uses 20 rounds of mixing. Variants of Salsa20 with
fewer rounds are possible, and the 12-round variant is specified by eSTREAM, see
http://wuw.ecrypt.eu.org/stream/finallist.html. Nettle calls this wvariant

salsa20r12. It uses the same context struct and key setup as the full salsa20 cipher, but
a separate function for encryption and decryption.

void salsa20rl12_crypt (struct salsa20_ctx *ctx, size_t length, [Function]
uint8-t *dst, const uint8-t *src)
Encrypts or decrypts the data of a message, using salsa20 reduced to 12 rounds.

7.2.11 SERPENT

SERPENT is one of the AES finalists, designed by Ross Anderson, Eli Biham and Lars
Knudsen. Thus, the interface and properties are similar to AES’. One peculiarity is that it
is quite pointless to use it with anything but the maximum key size, smaller keys are just
padded to larger ones. Nettle defines SERPENT in ‘<nettle/serpent.h>’.

Chapter 7: Reference 35

struct serpent_ctx [Context struct]

SERPENT_BLOCK_SIZE [Constant)|
The SERPENT block-size, 16.

SERPENT_MIN_KEY_SIZE [Constant|
Minimum SERPENT key size, 16.

SERPENT_MAX_KEY_SIZE [Constant|
Maximum SERPENT key size, 32.

SERPENT_KEY_SIZE [Constant)|
Default SERPENT key size, 32.

void serpent_set_key (struct serpent_ctx *ctx, size_t length, const [Function]
uint8_t *key)
Initialize the cipher. The same function is used for both encryption and decryption.

void serpent_encrypt (struct serpent_ctx *ctx, size_t length, uint8_-t [Function]
*dst, const uint8-t *src)
Encryption function. length must be an integral multiple of the block size. If it is
more than one block, the data is processed in ECB mode. src and dst may be equal,
but they must not overlap in any other way.

void serpent_decrypt (struct serpent_ctx *ctx, size_t length, uint8_-t [Function]
*dst, const uint8-t *src)
Analogous to serpent_encrypt

7.2.12 TWOFISH
Another AES finalist, this one designed by Bruce Schneier and others. Nettle defines it in
‘<nettle/twofish.h>’.

struct twofish_ctx [Context struct]

TWOFISH_BLOCK_SIZE [Constant|
The TWOFISH block-size, 16.

TWOFISH_MIN_KEY_SIZE [Constant)|
Minimum TWOFISH key size, 16.

TWOFISH_MAX_KEY_SIZE [Constant|
Maximum TWOFISH key size, 32.

TWOFISH_KEY_SIZE [Constant|
Default TWOFISH key size, 32.

void twofish_set_key (struct twofish_ctx *ctx, size_-t length, const [Function]
uint8_t *key)
Initialize the cipher. The same function is used for both encryption and decryption.

Chapter 7: Reference 36

void twofish_encrypt (struct twofish_ctx *ctx, size_t length, uint8_t [Function]
*dst, const uint8-t *src)
Encryption function. length must be an integral multiple of the block size. If it is
more than one block, the data is processed in ECB mode. src and dst may be equal,
but they must not overlap in any other way.

void twofish_decrypt (struct twofish_ctx *ctx, size_t length, uint8_t [Function]
*dst, const uint8-t *src)
Analogous to twofish_encrypt

7.2.13 The struct nettle_cipher abstraction

Nettle includes a struct including information about some of the more regular cipher func-
tions. It can be useful for applications that need a simple way to handle various algorithms.
Nettle defines these structs in ‘<nettle/nettle-meta.h>’.

struct nettle_cipher name context_size block_size key_size
set_encrypt_key set_decrypt_key encrypt decrypt
The last four attributes are function pointers, of types nettle_set_key_func * and
nettle_cipher_func *. The first argument to these functions is a const void *
pointer to a context struct, which is of size context_size.

[Meta struct]

struct
struct
struct

nettle_cipher
nettle_cipher
nettle_cipher

nettle_aes128
nettle_aes192
nettle_aes256

Constant Struct
Constant Struct
Constant Struct

Constant Struct
Constant Struct
Constant Struct
Constant Struct
Constant Struct
Constant Struct

[]
[]
[]
[]
[]
[]
[]
[]
[]
[Constant Struct]
[]
[]
[]
[]
[]
[]
[]
[]

struct nettle_cipher nettle_arctwo40

struct nettle_cipher nettle_arctwo64

struct nettle_cipher nettle_arctwol28

struct nettle_cipher nettle_arctwo_gutmannl28

struct nettle_cipher nettle_arcfourl28

struct nettle_cipher nettle_camellial28

struct nettle_cipher nettle_camellial92

struct nettle_cipher nettle_camellia256

struct nettle_cipher nettle_cast128

struct nettle_cipher nettle_serpent128

struct nettle_cipher nettle_serpent192

struct nettle_cipher nettle_serpent256

struct nettle_cipher nettle_twofish128

struct nettle_cipher nettle_twofish192 Constant Struct

struct nettle_cipher nettle_twofish256 Constant Struct
Nettle includes such structs for all the regular ciphers, i.e. ones without weak keys or
other oddities.

Constant Struct
Constant Struct
Constant Struct
Constant Struct
Constant Struct
Constant Struct

Nettle also exports a list of all these ciphers without weak keys or other oddities.

const struct nettle_cipher ** nettle_get_ciphers (void) [Function]
Returns a NULL-terminated list of pointers to supported block ciphers. This list can
be used to dynamically enumerate or search the supported algorithms.

Chapter 7: Reference 37

nettle_ciphers [Macro]
A macro expanding to a call to nettle_get_ciphers. In earlier versions, this was not a
macro but the actual array of pointers.

7.3 Cipher modes

Cipher modes of operation specifies the procedure to use when encrypting a message that
is larger than the cipher’s block size. As explained in See Section 7.2 [Cipher functions],
page 21, splitting the message into blocks and processing them independently with the block
cipher (Electronic Code Book mode, ECB), leaks information.

Besides ECB, Nettle provides several other modes of operation: Cipher Block
Chaining (CBC), Counter mode (CTR), Cipher Feedback (CFB and CFB8), XEX-based
tweaked-codebook mode with ciphertext stealing (XTS) and a couple of AEAD modes
(see Section 7.4 [Authenticated encryption], page 44). CBC is widely used, but
there are a few subtle issues of information leakage, see, e.g., SSH CBC vulnerability
(http://www.kb.cert.org/vuls/id/958563). Today, CTR is usually preferred over CBC.

Modes like CBC, CTR, CFB and CFBS8 provide no message authentication, and should
always be used together with a MAC (see Section 7.5 [Keyed hash functions|, page 60) or
signature to authenticate the message.

7.3.1 Cipher Block Chaining

When using CBC mode, plaintext blocks are not encrypted independently of each other,
like in Electronic Cook Book mode. Instead, when encrypting a block in CBC mode, the
previous ciphertext block is XORed with the plaintext before it is fed to the block cipher.
When encrypting the first block, a random block called an IV, or Initialization Vector, is
used as the “previous ciphertext block”. The IV should be chosen randomly, but it need
not be kept secret, and can even be transmitted in the clear together with the encrypted
data.

In symbols, if E_k is the encryption function of a block cipher, and IV is the initialization
vector, then n plaintext blocks M_1,. .. M_n are transformed into n ciphertext blocks C_1,. . .
C_n as follows:

C_1 = E_k(IV XOR M_1)
C_2 = E_k(C_1 XOR M_2)
C_n = E_k(C_(n-1) XOR M_n)

Nettle’s includes two functions for applying a block cipher in Cipher Block Chaining
(CBC) mode, one for encryption and one for decryption. These functions uses void * to
pass cipher contexts around.

Chapter 7: Reference 38

void cbc_encrypt (const void *ctx, nettle_cipher_func *f, size_t [Function]
block_size, uint8_t *iv, size_t length, uint8_t *dst, const uint8-t *src)
void cbc_decrypt (const void *ctx, nettle_cipher_func *f, size_t [Function]

block_size, uint8_t *iv, size_t length, uint8_t *dst, const uint8_t *src)
Applies the encryption or decryption function f in CBC mode. The final ciphertext
block processed is copied into iv before returning, so that a large message can be
processed by a sequence of calls to cbc_encrypt. The function f is of type

void f (void *ctx, size_t length, uint8_t dst, const uint8_t *src),

and the cbc_encrypt and cbc_decrypt functions pass their argument ctx on to f.
There are also some macros to help use these functions correctly.

CBC_CTX (context_type, block_size) [Macro]
Expands to

{
context_type ctx;
uint8_t iv[block_sizel;

¥

It can be used to define a CBC context struct, either directly,
struct CBC_CTX(struct aes_ctx, AES_BLOCK_SIZE) ctx;
or to give it a struct tag,
struct aes_cbc_ctx CBC_CTX (struct aes_ctx, AES_BLOCK_SIZE);

CBC_SET_IV (ctx, iv) [Macro]
First argument is a pointer to a context struct as defined by CBC_CTX, and the second
is a pointer to an Initialization Vector (IV) that is copied into that context.

CBC_ENCRYPT (ctx, f, length, dst, src) [Macro]

CBC_DECRYPT (ctx, f, length, dst, src) [Macro]
A simpler way to invoke cbc_encrypt and cbc_decrypt. The first argument is a
pointer to a context struct as defined by CBC_CTX, and the second argument is an
encryption or decryption function following Nettle’s conventions. The last three ar-
guments define the source and destination area for the operation.

These macros use some tricks to make the compiler display a warning if the types of f and
ctx don’t match, e.g. if you try to use an struct aes_ctx context with the des_encrypt
function.

7.3.2 Counter mode

Counter mode (CTR) uses the block cipher as a keyed pseudo-random generator. The
output of the generator is XORed with the data to be encrypted. It can be understood as
a way to transform a block cipher to a stream cipher.

The message is divided into n blocks M_1,... M_n, where M_n is of size m which may be
smaller than the block size. Except for the last block, all the message blocks must be of
size equal to the cipher’s block size.

If E_k is the encryption function of a block cipher, IC is the initial counter, then the n
plaintext blocks are transformed into n ciphertext blocks C_1,... C_n as follows:

Chapter 7: Reference 39

E_k(IC) XOR M_1
= E_k(IC + 1) XOR M_2

Q Q
N =
[

C_(n-1) = E_k(IC + n - 2) XOR M_(n-1)
Cn=EXk(IC+n-1) [1..m] XOR M_n

The IC is the initial value for the counter, it plays a similar réle as the IV for CBC. When
adding, IC + x, IC is interpreted as an integer, in network byte order. For the last block,
E_k(IC+n - 1) [1..m] means that the cipher output is truncated to m bytes.

void ctr_crypt (const void *ctx, nettle_cipher_func *f, size_t [Function]

block_size, uint8_t *ctr, size_-t l