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Model 1

Heat Equation

Module name: HeatSolve

Module subroutines: HeatSolver

Module authors: Juha Ruokolainen, Peter Raback, Matthias Zenker
Document authors: Juha Ruokolainen, Ville Savolainen, Peter Raback
Document edited: July 29th 2002

1.1 Introduction

Heat equation results from the requirement of energy conservation. In addition the Fourier’s law is used to
model the heat conduction. The linearity of the equation may be ruined by temperature dependent thermal
conductivity, or by heat radiation.

1.2 Theory

1.2.1 Governing Equations

The incompressible heat equation is expressed as

. (g+(ﬁ-V)T> _ V. (KVT) =73+ ph, (1.1)

where p is the density, ¢, the heat capacity at constant pressure, 7’ the temperature, i the convection velocity,
k the heat conductivity and / is source of heat. The term T : £ is the frictional viscous heating, which is
negligible in most cases. For Newtonian fluids, the viscous part of the stress tensor is

7 = 2, (1.2)

where Z the linearized strain rate tensor.

Eq.1.1 applies also for solids, setting & = 0. For solids, conduction may be anisotropic and the conduc-
tivity a tensor.

For compressible fluids, the heat equation is written as

ot

where c, is the heat capacity at constant volume. The density needs to be calculated from the equation of
state, e.g., perfect gas law. More information is given in the chapter describing the Navier-Stokes equation.

The Elmer heat equation module is capable of simulation heat transfer by conduction, convection, and
diffuse gray radiation. Also a phase change model is included. Couplings to other modules include, convec-
tion by fluid flow, frictional heating (modules providing flow fields), and resistive heating (modules providing
magnetic and/or electric fields).

T _
ey (+a‘-VT>—V-(WT):—pv.ﬁJrT;Hpm (1.3)

CSC —IT Center for Science (cc



1. Heat Equation 11

1.2.2 Arbitrary Lagrangian-Eulerian (ALE) coordinates

For problems involving a deforming mesh the transient heat equation must be solved using Arbitrary Lagrangian-
Eulerian (ALE) frame of reference. Assume that the mesh velocity is ¢. Then the convective term yields

pey (i = &) - V)T (1.4)

1.2.3 Phase Change Model

Elmer has an internal fixed grid phase change model. Modelling phase change is done by modifying the
definition of heat capacity according to whether a point in space is in solid or liquid phase or in a *'mushy’
region. The choice of heat capacity within the intervals is explained in detail below.

This type of algorithm is only applicable, when the phase change occurs within finite temperature inter-
val. If the modelled material is such that the phase change occurs within very sharp temperature interval,
this method might not be appropriate.

For the solidification phase change model Elmer uses, we need enthalpy. The enthalpy is defined to be

T of
H(T) = /0 <pcp + pLa/\> dA, (1.5)

where f(T) is the fraction of liquid material as a function of temperature, and L is the latent heat. The
enthalpy-temperature curve is used to compute an effective heat capacity, whereupon the equations become
identical to the heat equation. There are two ways of computing the effective heat capacity in Elmer:

oOH
Cpeff = T (1.6)
and 12
VH-VH
%ﬁ—<VPVT) ' 17

The former method is used only if the local temperature gradient is very small, while the latter is the preferred
method. In transient simulations a third method is used, given by

OH /ot
Cpeff = 8T/8t (18)

1.2.4 Additional Heat Sources

Frictional heating is calculated currently, for both incompressible and compressible fluids, by the heat source
hy=2uz : €. (1.9)

In case there are currents in the media the also the the resistive heating may need to be considered. The
Joule heating is then given by

=

B, = 17 (1.10)
g

In the above equations, B and E are the magnetic and electric fields, respectively. The current density Jis
defined as . . B
J=0o(E+1x B). (1.11)

In modeling biological tissue perfused with blood acting as heat sink an additional heat source term of
the Pennes’ Bioheat equation is needed. The term is

hy = copyw(Ty, — T) (1.12)

where ¢y, is the specific heat capacity, p, the density, and T}, the temperature of the blood. The perfusion rate
w is the volume of blood flowing through a unit volume of tissue per second. This additional source term is
modeled so that the part including 7T’ is treated implicitely for better convergence. Even though the model
was written for the biological application in mind the additional heat source may find also other uses.

CSC - IT Center for Science (cc



1. Heat Equation 12

1.2.5 Boundary Conditions

For temperature one can apply boundary conditions and have either temperature or heat flux prescribed.
Dirichlet boundary condition (temperature is prescribed) reads as

T="T,. (1.13)

The value of T} can be constant or a function of time, position or other variables.
Heat flux depending on heat transfer coefficient o and external temperature 7., may be written as
oT
_kain :OZ(T_Text) (114)
Both variables o and T, can be constant or functions of time, position or other variables. If the heat transfer
coefficient « is equal to zero, it means that the heat flux on a boundary is identically zero. The Neumann
boundary condition —k9T/On = 0 is also used in a symmetry axis in 2D, axisymmetric or cylindrical

problems.
Heat flux can consist of idealized radiation whereupon
or
—ko = oe(T* —TL,). (1.15)

Above, o is the Stefan-Boltzmann constant and ¢ the surface emissivity. The emissivity and the external
temperature can again be constant or functions of time, position, or other variables.
If the surface k is receiving radiation from other surfaces in the system, then the heat flux reads as

Ty,
- kk% = O'Ek(T];l —

1
Ak&'k

N
Z GaneiTHA), (1.16)
i=1

where the subscripts ¢ and k refer to surfaces ¢ and k, and the parameters A; and Ay, to the specific surface
areas. The factors GG;, are Gebhardt factors, and N represents the total number of radiating surfaces present
in the system. Emissivities are assumed to be constant on each surface.

The heat equation is nonlinear when radiation is modelled. The nonlinear term in the boundary condition
(1.15) can be linearized as

T* — Ty ~ (T3 + T T? + T2 T + T3 (T — Texe), (1.17)

where 7 is the temperature from the previous iteration.
One may also give an additional heat flux term as
or

~ha-=q. (1.18)

1.3 Keywords

Constants

Stefan Boltzmann Real
The value of the Stefan-Boltzmann constant needed for thermal radiation.

Simulation
The simulation section gives the case control data:

Simulation Type String
Heat equation may be either Transient or Steady State.

Coordinate System String
Defines the coordinate system to be used, one of: Cartesian 1D,Cartesian 2D, Cartesian
3D, Polar 2D, Polar 3D, Cylindric, Cylindric Symmetric and Axi
Symmetric.

CSC —IT Center for Science (cc



1. Heat Equation 13

Timestepping Method String
Possible values of this parameter are Newmark (an additional parameter Newmark Beta must
be given), BDF (BDF Order must be given). Also as a shortcut to Newmark-method with
values of Beta= 0.0,0.5, 1.0 the keywords Explicit Euler, Crank-Nicolson, and
Implicit Euler may be given respectively. The recommended choice for the first order
time integration is the BDF method of order 2.

BDF Order Integer
Value may range from 1 to 5.

Newmark Beta Real
Value in range from 0.0 to 1.0. The value 0.0 equals to the explicit Euler integration method and
the value 1.0 equals to the implicit Euler method.

Solver solver id
The solver section defines equation solver control variables. Most of the possible keywords — related
to linear algebra, for example — are common for all the solvers and are explained elsewhere.

Equation String Heat Equation
The name of the equation.

Nonlinear System Convergence Tolerance Real
The criterion to terminate the nonlinear iteration after the relative change of the norm of the field
variable between two consecutive iterations is small enough

[T — Tia|| < el|T3]]

where ¢ is the value given with this keyword.

Nonlinear System Max Iterations Integer
The maximum number of nonlinear iterations the solver is allowed to do.

Nonlinear System Newton After Iterations Integer
Change the nonlinear solver type to Newton iteration after a number of Picard iterations have
been performed. If a given convergence tolerance between two iterations is met before the it-
eration count is met, it will switch the iteration type instead. In the heat equation the Picard
iterations means that the radiation term is factorized to linear and third-power terms.

Nonlinear System Newton After Tolerance Real
Change the nonlinear solver type to Newton iteration, if the relative change of the norm of the
field variable meets a tolerance criterion:

|Ts = Tia || < €l T3],

where ¢ is the value given with this keyword.

Nonlinear System Relaxation Factor Real
Giving this keyword triggers the use of relaxation in the nonlinear equation solver. Using a
factor below unity is sometimes required to achieve convergence of the nonlinear system. A
factor above unity might speed up the convergence. Relaxed variable is defined as follows:

T, = XT; + (1 = \)T;_1,

where ) is the factor given with this keyword. The default value for the relaxation factor is unity.

Steady State Convergence Tolerance Real
With this keyword a equation specific steady state or coupled system convergence tolerance is
given. All the active equation solvers must meet their own tolerances before the whole system is
deemed converged. The tolerance criterion is:

|T; — Tial| < el|T3],

where € is the value given with this keyword.

CSC —IT Center for Science [@)BY-nD |



1. Heat Equation 14

Stabilize Logical
If this flag is set true the solver will use stabilized finite element method when solving the heat
equation with a convection term. If this flag is set to False RFB (Residual Free Bubble)
stabilization is used instead (unless the next flag Bubbles is set to False in a problem with
Cartesian coordinate system). If convection dominates stabilization must be used in order to
successfully solve the equation. The default value is False.

Bubbles Logical
There is also a residual-free-bubbles formulation of the stabilized finite-element method. It is
more accurate and does not include any ad hoc terms. However, it may be computationally more
expensive. The default value is True. If both Stabilize and Bubbles orsetto False, no
stabilization is used. Note that in this case, the results might easily be nonsensical.

Smart Heater Control After Tolerance Real
The smart heater control should not be activated before the solution has somewhat settled. By
default the smart heater control is set on when the Newtonian linearization is switched on for the
temperature equation. Sometimes it may be useful to have more stringent condition for turning
on the smart heater control and then this keyword may be used to give the tolerance.

Apply Limiter Logical
The generic soft limiters may be applied for the heat equation equation. They could for example,
account for the effects of phase change under circumstances where it may be assumed that the
temperature does not go over the phase change temperature. With this flag active the minimum
and maximum limiters are accounted.

In some cases the geometry or the emissivities of the radiation boundaries change. This may require
the recomputation of the view factors and Gebhardt factors. For that purpose also dynamic computa-
tion of the factors is enabled and it is controlled by the keywords below. The radiation factors are also
automatically computed if no files for the factors are given allthough radiation boundaries exist.

Update View Factors Logical
The recomputation of the view factors is activated by setting the value of this flag to True.
False is the default.

Update Gebhardt Factors Logical
If the emissivities depend on the solution the Gebhardt factors may need to be recomputed. This
is activated by setting giving this flag value True. False is the default.

Minimum View Factor Real
This keyword determines the cut-off value under which the view factors are omitted. Neglecting
small values will not only save memory but also will make the matrix used for solving the
Gabhardt factors less dense. This consequently will enable more efficient sparse matrix strategies
in solving the Gebhardt factors. The value for this parameter might be of the order 10e-8.

Minimum Gebhardt Factor Real
The Gebhardt factors make part of matrix dense. By neglecting the smallest Gebhardt factors
the matrix structure for the heat equation may become significantly sparser and thus the solution
time may drop. The value for this parameter might also be of the order 10e-8.

Implicit Gebhardt Factor Fraction Real
In computing heat transfer problems with radiation in an implicit manner the matrix structure
becomes partially filled. This affects the performance of the linear equation solvers and also
increases the memory requirements. On the other hand explicit treatment of radiation slows
down the convergence significantly. This keyword allows that the largest Gebhardt factors are
treated in an implicit manner whereas the smallest are treated explicitely. The value should lie in
between zero (fully explicit) and one (fully implicit).

Matrix Topology Fixed Logical
If the Gebhardt factors change the matrix structure of the heat equation may also have to be
changed unless this flag is set to False. Then all factors that do not combine with the matrix
structure are omitted.
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1. Heat Equation 15

View Factors Geometry Tolerance Real
The view factors take a lot of time to compute. Therefore during the iteration a test is performed
to check whether the geometry has changed. If the relative maximum change in the coordinate
values is less than the value given by this parameter the view factors are not recomputed and the
old values are used.

View Factors Fixed After Iterations Integer
Sometimes the iteration changes the geometry of the radiation boundaries as an unwanted side-
effect. Then the geometry on the radiation boundary may be set fixed after some iterations. In
practice this is done by adding suitable Dirichlet conditions in the boundary conditions.

Gebhardt Factors Fixed After Iterations Integer
Sometimes the emissivity depends on temperature but recomputing it every time may be costly.
By this keyword the recomputation may be limited to the given number of visits to the heat
equation solver.

View Factors Fixed Tolerance Real
This keywords defines the coupled system tolerance for the heat equation after which the recom-
putation of view factors is omitted. Typically this should be defined by a geometry tolerance but
if the temperature solver follows the changes in geometry this may be a good control as well.

Gebhardt Factors Fixed Tolerance Real
This keywords defines the coupled system tolerance for the heat equation after which the recom-
putation of Gebhardt factors is omitted. The temperature dependence of emissivity is typically
not so strong that small temperature changes would result to a need to recompute the Gebhardt
factors as well.

Gebhardt Factors Solver Full Logical
If the view factor matrix is relatively sparse it will make sense to use a sparse matrix equation
for solving the Gebhardt factors. This flag may be used if a full matrix should be desired.

Gebhardt Factors Solver Iterative Logical
If the Gebhardt factors are solved from a sparse matrix equation also the type of solver may
be selected. The default is direct umfpack solver. Sometimes the memory usage may be a
problem or the direct strategy simply not efficient enough. Then an iterative cgs solver may be
used instead.

Viewfactor Divide Integer
For axisymmetric view factor computation gives the number of divisions for each element. The
default is 1.

Viewfactor Combine Elements Logical
There may be a significant amount of saved time if in the axisymmetric view factor computation
the elements that are aligned and share a common node are united. The shadowing loop will then
only be performed over these macroelements.

Equation eg id
The equation section is used to define a set of equations for a body or set of bodies.

Heat Equation String
If set to True, solve the heat equation.

Convection String
The type of convection to be used in the heat equation, one of: None, Computed, Constant.

Phase Change Model String
One of: None, Spatial 1, Spatial 2 and Temporal. Note that when solidification
is modelled, the enthalpy-temperature- and viscosity-temperature-curves must be defined in the
material section.

Body Forces bf id
The body force section may be used to give additional force terms for the equations. The following
keywords are recognized by the base solver:
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1. Heat Equation 16

Heat Source Real
A heat source h for the heat equation may be given with this keyword. Note that by default the
heating is given per unit mass, not unit volume.

Friction Heat Logical
Currently redundant keyword, the frictional heating h; is automatically added.

Joule Heat Logical
If set True, triggers use of the electromagnetic heating. This keywords accouns for the heating
of many different solvers; electrostatics, magnetostatics, and induction equation.

Smart Heater Control Logical
Sometimes the predescribed heat source does not lead to the desired temperature. Often the
temperature is controlled by a feedback and therefore a similar heater control in the simulation
may give more realistic results. This flag makes sets the smart heater control on for the given
body force.

Integral Heat Source Real
This keyword activates a normaliazation of the Heat Source so that the integral heating power
is the desired objective.

Temperature Lower Limit Real
The lower limit for temperature that is enforced iteratively when the soft limters are applied.

Temperature Upper Limit Real
The upper limit for temperature that is enforced iteratively when the soft limters are applied.

There are four optional keywords related to the Pennes’ bioheat equation term that model the perfusion
process.

Perfusion Rate Real
The rate of the perfusion w. Activates the perfusion process.
Perfusion Reference Temperature Real
Temperature T}, of the perfusion fluid.

Perfusion Density Real
Density py, of the perfusion fluid.

Perfusion Heat Capacity Real
Heat capacity c¢;, of the perfusion fluid.

Initial Condition ic id
The initial condition section may be used to set initial values for temperature.

Temperature Real

Material mat id

The material section is used to give the material parameter values. The following material parameters
may be effective when heat equation is solved.

Density Real
The value of density is given with this keyword. The value may be constant, or variable. For the
compressible flow, the density is computed internally, and this keyword has no effect.
Enthalpy Real
Note that, when using the solidification modelling, an enthalpy-temperature curve must be given.
The enthalpy is derived with respect to temperature to get the value of the effective heat capacity.
Viscosity Real
Viscosity is needed if viscous heating is taken into account. When using the solidification mod-

elling, a viscosity-temperature curve must be given. The viscosity must be set to high enough
value in the temperature range for solid material to effectively set the velocity to zero.
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1. Heat Equation 17

Heat Capacity Real
The value of heat capacity in constant pressure ¢, is given with this keyword. The value may
be constant, or variable. For the phase change model, this value is modified according to rules
given in the theory section.

Heat Conductivity Real
The value of heat conductivity k is given with this keyword. The value may be a constant or
variable.

Convection Velocity i Real
Convection velocity 1= 1, 2, 3 for the constant convection model.

Compressiblity Model Real
This setting may be used to set the compressibilty model for the flow simulations. Choices are
Incompressible and Perfect Gas. If set to the latter there may be mechanical work
performed by the heating. Then also the settings Reference Pressure and Specific
Heat Ratio must also be given.

Reference Pressure Real
With this keyword a reference level of pressure may be given.

Specific Heat Ratio Real
The ratio of specific heats (in constant pressure versus in constant volume) may be given with this
keyword. The default value of this setting is 5/3, which is the appropriate value for monoatomic
ideal gas.

Emissivity Real
Emissivity of the radiating surface, required for radiation model is present. If the emissivity is
not found in the radiating boundary only then will it be looked at the material properties of the
parent elements. Often locating the emissivity here makes the case definition more simple.

Transmissivity Real
For the diffuse gray radiation model also transmissivity of the surface may be provided. It gives
the part of the energy that is lost as it passes through the wall. By default transmissivity is zero.

Boundary Condition bc id
The boundary condition section holds the parameter values for various boundary condition types. In
heat equation we may set the temperature directly by Dirichlet boundary conditions or use different
flux conditions for the temperature. The natural boundary condition of heat equation is zero flux
condition.

Temperature Real

Heat Flux BC TLogical
Must be set to True, if heat flux boundary condition is present.

Heat Flux Real
A user defined heat flux term.

Heat Transfer Coefficient Real
Defines the parameter « in the heat flux boundary condition of the type

oT
—k— =a(T — Teyt).
an ( ezt)
External Temperature Real
Defines the variable for ambient temperature 7, in the previous equation.

Radiation String
The type of radiation model for this boundary, one of: None, Idealized, Diffuse Gray.
Note that, when using the diffuse gray radiation model, the file containing the Gebhardt factors
must be given in the simulation section.
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1. Heat Equation 18

Radiation Boundary Integer
If there are many closures with radiation boundary conditions that do not see each other the
view factors may be computed separately. This keyword is used to group the boundaries to
independent sets. The default is one.

Radiation Boundary Open Logical
The closures may be partially open. Then no normalization of the view factors is enforced. The
missing part of the radiation angle is assumed to be ideal radiation. Therefore if this option is
enforced also the parameter External Temperature must be given.

Radiation External Temperature Real
In case the external temperature related to the heat transfer coefficient is different than that related
to the radiation they cannot be given with the same keyword. For this purpose an alternative
keyword is provided for radiation problems. This is used instead if it present.

Emissivity Real
Emissivity of the radiating surface, required for radiation model is present. If the emissivity is
not found here it will be searched at the parant elements.

Transmissivity Real
If the transmissivity is not found here it will be searched at the parant elements.

Radiation Target Body Integer
This flag may be used to set the direction of the outward pointing normal. This is used when
computing viewfactors. A body identification number must be given. The default is that the
normal points to less dense material or outward on outer boundaries.

Smart Heater BoundaryLogical If the smart heater is activated the point for monitoring the tempera-
ture is the point with maximum x-coordinate on the boundary where this keyword is set True.
Alternatively the logical variable Phase Change is looked for.

Smart Heater TemperatureReal The desired temperature for the smart heater system is set by this
keyword. Alternatively the real variable Melting Point may be used.
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2.1 Introduction

In solid and liquid materials heat transfer and viscous fluid flow are governed by heat and Navier-Stokes
equations, which can be derived from the basic principles of conservation of mass, momentum and energy.
Fluid can be either Newtonian or non-Newtonian. In the latter case the consideration in Elmer is limited to
purely viscous behaviour with the power-law model.

In the following we present the governing equations of fluid flow, heat transfer and stresses in elastic
material applied in Elmer. Also the most usual boundary conditions applied in computations are described.

2.2 Theory
The momentum and continuity equations can be written as
o _ -
p(u+(ﬁ~V)ﬂ)V~0p, 2.1)
ot
and
dp . ,
5 +(@-Vp | +p(V-4) =0, (2.2)
where G is the stress tensor. For Newtonian fluids
_ - 2 = =
T =2uE — g,u(v i)l —pl, (2.3)

where p is the viscosity, p is the pressure, I the unit tensor and Z the linearized strain rate tensor, i.e.

1 8”1' an
"= = . 24
&ij 2 (81‘] + 8l‘l> ( )
The density of an ideal gas depends on the pressure and temperature through the equation of state
p
= 2.5
P= 7T 2.5)
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2. Navier-Stokes Equation 20

where R is the gas constant:

R = 5 Cp- (2.6)
The specific heat ratio -y is defined as
— 2.7)
Cy

where ¢, and ¢, are the heat capacities in constant pressure and volume, respectively. The value of v depends
solely on the internal molecular properties of the gas.
An imcompressibe flow is characterized by the condition p=constant, from which it follows that

V-d=0. (2.8)

Enforcing the constraint (2.8) in (2.1), (2.2) and (2.3), the equations reduce to the Navier-Stokes equations

p(G+@W)0) VB + T = oF. 29)
Vi = 0. (2.10)

Compressible flows are modelled by the equations (2.1)-(2.7). Then, it is possible to replace the state equa-
tion (2.5) by
1
p=—3p, (2.11)
C

where ¢ = ¢(p, T, .. .) is the speed of sound. The equation (2.11) can be used with liquid materials as well.

Most commonly the term p f represents a force due to gravity, in which case the vector f is the gravita-
tional acceleration. It can also represent, for instance, the Lorentz force when magnetohydrodynamic effects
are present.

For isothermal flows the equations (2.9) and (2.10) desrcibe the system in full. For thermal flows also
the heat equation needs to be solved.

For thermal incompressible fluid flows we assume that the Boussinesq approximation is valid. This
means that the density of the fluid is constant except in the body force term where the density depends
linearly on temperature through the equation

p=po(l—pB(T —Tp)), (2.12)

where 3 is the volume expansion coefficient and the subscript O refers to a reference state. Assuming that
the gravitational acceleration g is the only external force, then the force poG(1 — B(T — Tp)) is caused in the
fluid by temperature variations. This phenomenon is called Grashof convection or natural convection.

One can choose between transient and steady state analysis. In transient analysis one has to set, besides
boundary conditions, also initial values for the unknown variables.

2.2.1 Boundary Conditions

For the Navier-Stokes equation one can apply boundary conditions for velocity components or the tangential
or normal stresses may be defined.
In 2D or axisymmetric cases the Dirichlet boundary condition for velocity component w; is simply

u; = ul. (2.13)

?

A value uf’ can be constant or a function of time, position or other variables. In cylindrical cases the Dirichlet
boundary condition for angular velocity u? is

u = w, (2.14)

where w is the rotation rate.
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2. Navier-Stokes Equation 21

In axisymmetric geometries one has to set u,, = 0 and Ju, /Or = 0 on the symmetry axis.
If there is no flow across the surface, then

i-i=0 (2.15)

where 77 is the outward unit normal to the boundary.
Surface stresses can be divided into normal and tangential stresses. Normal stress is usually written in
the form
~

n= = — Da 2.16
o A (2.16)

where 7 is the surface tension coefficient, R the mean curvature and p, the atmospheric (or external) pres-
sure. Tangential stress has the form
d. =V, 2.17)

where V is the surface gradient operator.

The coefficient y is a thermophysical property depending on the temperature. Temperature differences
on the surface influence the transport of momentum and heat near the surface. This phenomenon is called
Marangoni convection or thermocapillary convection. The temperature dependence of the surface tension
coefficient can be approximated by a linear relation:

v =1 —=HT —1Tp)), (2.18)

where ¥ is the temperature coefficient of the surface tension and the subscript 0 refers to a reference state.
If a Boussinesq hypothesis is made, i.e., the surface tension coefficient is constant except in (2.17) due to
(2.18), the boundary condition for tangential stress becomes

Gy = 97V, T. (2.19)

In equation (2.16) it holds then that v = ~y. The linear temperature dependence of the surface tension
coefficient is naturally only one way to present the dependence. In fact, the coefficient v can be any user
defined function in Elmer. One may also give the force vector on a boundary directly as in

Fi=4. (2.20)

2.2.2 Linearization

As is well known, the convective transport term of the Navier-Stokes equations and the heat equation is a
source of both physical and numerical instability. The numerical instability must be compensated somehow
in order to solve the equations on a computer. For this reason the so called stabilized finite element method
([2],[1]) is used in Elmer to discretize these equations.

The convection term of the Navier-Stokes equations is nonlinear and has to be linearized for computer
solution. There are two linearizations of the convection term in Elmer:

—

(@ V)i~ U-V)i (2.21)

and
(@-V)ir (U-V)i+ (@ VU—U-V)U, (2.22)

where 1 is the velocity vector from the previous iteration. The first of the methods is called Picard iteration
or the method of the fixed point, while the latter is called Newton iteration. The convergence rate of the
Picard iteration is of first order, and the convergence might at times be very slow. The convergence rate of
the Newton method is of second order, but to succesfully use this method, a good initial guess for velocity
and pressure fields is required. The solution to this problem is to first take a couple of Picard iterations, and
switch to Newton iteration after the convergence has begun.
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2. Navier-Stokes Equation 22

2.2.3 Arbitrary Lagrangian-Eulerian (ALE) coordinates

For problems involving deformations the transient Navier-Stokes equation must be solved using Arbitrary
Lagrangian-Eulerian (ALE) frame of reference. Assume that the mesh velocity during the nonlinear iteration
is ¢. Then the convective term yields

(G—2)-V)ir (U-2)- V)i (2.23)
This results naturally to Picard iteration. For Newton iteration the additional two terms remains the same
since the mesh velocities in there cancel each other.

2.2.4 Non-newtonian Material Models

There are several non-newtonian material models. All are functions of the strainrate 7. The simple power
law model has a problematic behavior at low shear rates. The more complicated models provide a smooth
transition from low to high shearrates.

Power law
. n_l . . .
0y if 4 > 4o,
n=" T (2.24)
Yo Y <o
where 7)., is constant, g is the critical shear rate, and n is the viscosity exponent.
Carreau-Yasuda L
N="Ns+An1l+(cy)?) 7, (2.25)

where 7). is the high shearrate viscosity ¥ — oo provided that n < 1. For shearrates approaching zero the
viscosity is 79 = oo + An. An is thus the maximum viscosity difference between low and high shearrate.
This model recovers the plain Carreau model when the Yasuda exponent y = 2.

Cross A
N
= , 2.26
1= e+ T (2.26)
where again 7)., is the high shearrate viscosity.
Powell-Eyring
asinh(c)

0= oo + Ancé”). (227)

All the viscosity models can be made temperature dependent. The current choice is to multiply the
suggested viscosity with a factor exp(d(1/(T, + T) — 1/T})), where d is the exponential factor, T}, is
temperature offset (to allow using of Celcius), and 7;. the reference temperature for which the factor becomes
one.

2.2.5 Flow in Porous Media

A simple porous media model is provided in the Navier-Stokes solver. It utilizes the Darcy’s law that states
that the flow resistance is proportinal to the velocity and thus the modified momentum equation reads
ou . = 7
p a-k(u-V)u —V.-g+ri=pf, (2.28)
where 7 is the porous resistivity which may also be an orthotropic tensor. Usually the given parameter is
permeability which is the inverse of the resistivity as defined here. No other features of the porous media
flow is taken into consideration. Note that for large value of r only the bubble stabilization is found to work.
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2.2.6 Rotating coordinates

In rotating coordinate system around origin one may define the angular velocity vector, Q). The rotation
introduces additional forces that may be evalued from the following

d_’iner ia d_"r‘o atin ~ - ~ = —
Y dtt L_ v C;tt 9 190 X @yorating + O x (3 x 7). (2.29)

In numerical implementationthe following Lagrange’s formula is used

Ox (A x3)=(Q-D)0—(Q-Q)z. (2.30)

which results to the following form of the Navier-Stokes equation in rotating coordinates

P(?:Jr(@V)ﬁ) =V 7+ 200 x @ = p(Q- D~ p(Q- D)0+ pf, @30

It should be noted that now also the boundary conditions need to be given in the rotational coordinate system.

2.2.7 Coupling to Electric Fields

In electrokinetics the fluid may have charges that are coupled to external electric fields. This results to an
external force that is of the form

fo=—peVo, (2.32)

where p, is the charge density and ¢ is the external electric field. The charge density may also be a variable.
More specifically this force may be used to couple the Navier-Stokes equation to the Poisson-Boltzmann
equation describing the charge distribution in electric doubly layers. Also other types of forces that are
proportional to the gradient of the field may be considered.

2.2.8 Coupling to Magnetic Fields

If the fluid has free charges it may couple with an magnetic field. The magnetic field induced force term for
the flow momentum equations is defined as

fon=Jx B, (2.33)
Here B and E are the magnetic and electric fields, respectively. The current density J is defined as

J=0o(E+1x B). (2.34)

2.3 Keywords

Constants

Gravity Size 4 Real [x y z abs]
The above statement gives a real vector whose length is four. In this case the first three compo-
nents give the direction vector of the gravity and the fourth component gives its intensity.

Solver solver id
Note that all the keywords related to linear solver (starting with Linear System) may be used in
this solver as well. They are defined elsewhere.

Equation String [Navier-Stokes]
The name of the equation.

Flow Model String [Full][No convection] [Stokes]
Flow model to be used. The default is to include both convection and time derivative terms in the
model. The "No convection" model switches off the convection terms, and the "Stokes" model
both the convection terms and the (explicit) time derivative terms.
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Nonlinear System Convergence Tolerance Real
this keyword gives a criterion to terminate the nonlinear iteration after the relative change of the
norm of the field variable between two consecutive iterations is small enough

g —wi—1|] < el|uil],

where € is the value given with this keyword.

Nonlinear System Max Iterations Integer
The maxmimum number of nonlinear iterations the solver is allowed to do.

Nonlinear System Newton After Iterations Integer
Change the nonlinear solver type to Newton iteration after a number of Picard iterations have
been performed. If a given convergence tolerance between two iterations is met before the itera-
tion count is met, it will switch the iteration type instead.

Nonlinear System Newton After Tolerance Real
Change the nonlinear solver type to Newton iteration, if the relative change of the norm of the
field variable meets a tolerance criterion:

i —wi—1|] < el|uil],

where e is the value given with this keyword.

Nonlinear System Relaxation Factor Real
Giving this keyword triggers the use of relaxation in the nonlinear equation solver. Using a factor
below unity is sometimes required to achive convergence of the nonlinear system. A factor above
unity might speed up the convergence. Relaxed variable is defined as follows:

u; = Au; + (1 — )\)ui_l,

where ) is the factor given with this keyword. The default value for the relaxation factor is unity.

Steady State Convergence Tolerance Real
With this keyword a equation specific steady state or coupled system convergence tolerance is
given. All the active equation solvers must meet their own tolerances before the whole system is
deemed converged. The tolerance criterion is:

i — wia|| < ef|uil],

where € is the value given with this keyword.

Stabilize Logical
If this flag is set true the solver will use stabilized finite element method when solving the Navier-
Stokes equations. Usually stabilization of the equations must be done in order to succesfully
solve the equations. If solving for the compressible Navier-Stokes equations, a bubble function
formulation is used instead of the stabilized formulation regardless of the setting of this keyword.
Also for the incompressible Navier-Stokes equations, the bubbles may be selected by setting this
flag to False.

Div Discretization Logical
In the case of incompressible flow using the this form of discretization of the equation may lead
to more stable discretization when the Reynolds number increases.

Gradp Discretization Logical
Whit this form of discretization pressure Dirichlet boundary conditions can be used (and pressure
level must be fixed by such a condition). Also the mass flux is available as a natural boundary
condition.

Equation eqg id
The equation section is used to define a set of equations for a body or set of bodies:
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Navier—-Stokes Logical
if set to True, solve the Navier-Stokes equations.

Magnetic Induction Logical
If set to True, solve the magnetic induction equation along with the Navier-Stokes equations.

Convection String [None, Computed, Constant]
The convection type to be used in the heat equation, one of: None, Computed, Constant.
The second choice is used for thermal flows.

Body Force bf id
The body force section may be used to give additional force terms for the equations.

Boussinesq Logical
If set true, sets the Boussinesq model on.

Flow BodyForce i Real
May be used to give additional body force for the flow momentum equations, i=1, 2, 3.

Lorentz Force Logical
If set true, triggers the magnetic field force for the flow mementum equations.

Potential Force Logical
If this is set true the force used for the electricstatic coupling is activated.

Potential Field Real
The field to which gradient the external force is proportional to. For example the electrostatic
field.

Potential Coefficient Real
The coefficient that multiplies the gradient term. For example, the charge density.

Angular Velocity Real
The angular velocity 2 used for rotating coordinate systems. The size is always expected to be
three.

Initial Condition ic id
The initial codition section may be used to set initial values for the field variables. The following
variables are active:

Pressure Real

Velocity i Real
For each velocity component 1= 1,2, 3.

Kinetic Energy Real
For the k-¢ turbulence model.

Kinetic Energy Dissipation Real

Material mat id
The material section is used to give the material parameter values. The following material parameters
may be set in Navier-Stokes equation.

Density Real The value of density is given with this keyword. The value may be constant, or
variable. For the of compressible flow, the density is computed internally, and this keyword has
no effect.

Viscosity Real
The relationship between stress and strain velocity. When using the solidification modelling, a
viscosity-temperature curve must be given. The viscosity must be set to high enough value in
the temperature range for solid material to effectively set the velocity to zero.

Reference Temperature Real
This is the reference temperature for the Boussinesq model of temperature dependence of density.
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Heat Expansion Coefficient real
For the Boussinesq model the heat expansion coefficient must be given with this keyword. De-
fault is 0.0.

Applied Magnetic Field i Real
An applied magnetic field may be given with these keywords with i=1, 2, 3.

Compressiblity Model String
This setting may be used to set the compressibilty model for the flow simulations. Currently the
setting may be set to either Incompressible,Perfect GasandArtificialCompressible.
If perfect gas model is chosen the settings Reference Pressure and Specific Heat
Ratio must also be given. The artificial compressibility model may be used to boost conver-
gence in fluid-structure-interaction cases. The default value of this setting is Incompressible.

Reference Pressure Real
with this keyword a reference level of pressure may be given. This setting applies only if the
Compressiblity Model is set to the value Perfect Gas.

Specific Heat Ratio Real
The ratio of specfic heats (in constant pressure versus in constant volume) may be given with this
keyword. This setting applies only if the Compressiblity Model is setto value Perfect
Gas. The default value of this setting is 5/3, which is the appropriate value for monoatomic
ideal gas.

For the k- turbulence model the model parameters may also be given in the material section using the
following keywords

KE SigmaK Real [1.0]

KE SigmaE Real [1.3]

KE Cl Real [1.44]

KE C2 Real [1.92]

KE Cmu Real [0.09]

Non-newtonian material laws are also defined in material section. For the power law the constant
coefficient is given by the keyword Viscosity.

Viscosity Model String
The choices are power law, carreau, cross, powell eyringandthermal carreau.
If none is given the fluid is treated as newtonian.

Viscosity Exponent Real
Parameter n in the models power law, Carreau, Cross

Viscosity Difference Real
Difference An between high and low shearrate viscosities. Ablicable to Carreau, Cross and
Powell-Eyring models.

Viscosity Transition Real
Parameter c in the Carreau, Cross and Powell-Eyring models.

Critical Shear Rate Real [0.0]
Optional parameter 7 in power law viscosity model.

Nominal Shear Rate Real [0.0]
Optional parameter in the power law viscosity model that gives the shearrate that returns the
plain newtonian viscosity.

Yasuda Exponent Real
Optional parameter y in Carreau model. The default is 2. If activated the model is the more
generic Yasuda-Carreau model.
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2. Navier-Stokes Equation 27

Viscosity Temp Offset Real
Parameter 7}, in the thermal viscosity dependence. When using Celcius instead of Kelvins this
would be 273.15, for example.

Viscosity Temp Ref Real
Parameter 7). in the thermal viscosity dependence. This should be set so that unity factor is
obtained when 1. =T, + T.

Viscosity Temp Exp Real
Exponential parameter d in the thermal viscosity dependence.

Porosity is defined by the material properties

Porous Media Logical
If this keyword is set True then the porous model will be active in the material.

Porous Resistance Real
This keyword may give a constant resistance or also a orthotropic resistance where the resistance
of each velocity component is given separately.

Boundary Condition bc id
The boundary condition section holds the parameter values for various boundary condition types.
Dirichlet boundary conditions may be set for all the primary field variables. The one related to Navier-
Stokes equation are

Velocity i Real
Dirichlet boundary condition for each velocity component i= 1, 2, 3.

Pressure Real
Absolute pressure.

Normal-Tangential Velocity Real
The Dirichlet conditions for the vector variables may be given in normal-tangential coordinate
system instead of the coordinate axis directed system using the keywords

Flow Force BC Logical
Set to t rue, if there is a force boundary condition for the Navier-Stokes equations.

Surface Tension Expansion Coefficient Real
Triggers a tangetial stress boundary condition to be used. If the keyword Surface Tension
Expansion Coefficient is given, a linear dependence of the surface tension coefficient
on the temperature is assumed. Note that this boundary condition is the tangential derivative of
the surface tension coefficient

Surface Tension Coefficient Real
Triggers the same physical model as the previous one except no linearity is assumed. The value
is assumed to hold the dependence explicitely.

External Pressure Real
A pressure boundary condition directed normal to the surface.

Pressure i1 Real
A pressure force in the given direction i= 1,2, 3.

Free Surface Logical
Specifies a free surface.

Free Moving Logical
Specifies whether the regeneration of mesh is free to move the nodes of a given boundary when
remeshing after moving the free surface nodal points. The default is that the boundary nodes are
fixed.

The k-¢ turbulence model also has its own set of boundary condition keywords (in addition to the
Dirichlet settings):
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Wall Law Logical
The flag activates the (Reichardts) law of the wall for the boundary specified. the default is 9.0.

Boundary Layer Thickness Real
The distance from the boundary node of the meshed domain to the physical wall.

Bibliography

[1] L.P. Franca and S.L. Frey. Computer methods in Applied Mechanics and Engineering, 99:209-233,
1992.

[2] L.P. Franca, S.L. Frey, and T.J.R. Hughes. Computer methods in Applied Mechanics and Engineering,
95:253-276, 1992.
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Advection-Diffusion Equation

Module name: AdvectionDiffusion

Module subroutines: AdvectionDiffusionSolver

Module authors: Juha Ruokolainen, Ville Savolainen, Antti Pursula
Document authors: Ville Savolainen, Antti Pursula

Document edited: Oct 29th 2003

3.1 Introduction

Advection-diffusion equation (sometimes called diffusion-convection equation) describes the transport of a
scalar quantity or a chemical species by convection and diffusion. The difference in the nomenclature usually
indicates that an advected quantity does not have an effect on the velocity field of the total fluid flow but
a convected quantity has. Advection-diffusion equation is derived from the principle of mass conservation
of each species in the fluid mixture. Advection-diffusion equation may have sources or sinks, and several
advection-diffusion equations may be coupled together via chemical reactions.

Fick’s law is used to model the diffusive flux. Diffusion may be anisotropic, which may be physically
reasonable at least in solids. If the velocity field is identically zero, the advection-diffusion equation reduces
to the diffusion equation, which is applicable in solids.

Heat equation is a special case of the advection-diffusion (or diffusion-convection) equation, and it is
described elsewhere in this manual.

3.2 Theory

3.2.1 Governing Equations

The advection-diffusion equation may, in general, be expressed in terms of relative or absolute mass or
molar concentrations. In Elmer, when the transported quantity is carried by an incompressible fluid (or it is
diffused in a solid), relative mass concentration ¢; = C;/p for the species 7 is used (C; is the absolute mass
concentration in units kg/m3, and p the total density of the mixture). We have used the approximation valid
for dilute multispecies flows, i.e., 0 < ¢; < 1. The advection-diffusion equation is now written as

ot

where ' is the advection velocity, D; the diffusion coefficient and \S; is a source, sink or a reaction term. The
diffusion coefficient may be a tensor.

For a compressible fluid, the concentration should be expressed in absolute mass units, and the advection-
diffusion equation reads

9C;
ot
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3. Advection-Diffusion Equation 30

For a situation, where the quantity is transported through a phase change boundary, it is convenient to
scale the absolute mass formulation by the respective solubilities of the different phases. Such a case is for
example the surface of a liquid, where the transported quantity is evaporated into a gaseous material. The
scaled concentration variable satisfies the equilibrium boundary condition on the phase change boundary
automatically, and thus the advection-diffusion equation can be solved for both materials simultaneously.
The scaling is following c

3

)
Ci,mar

where z; is the concentration of species ¢ relative to its maximum solubility in the current material in absolute
mass units. The maximum solubility has to be a constant (temperature independent) for the absolute mass
formulation of the advection-diffusion equation to remain unchanged.

It is also possible to include temperature dependent diffusion (Soret diffusion). This introduces an addi-
tional term on the right had side of the equation:

(3.3)

T =

V- (pDirVT), (3.4)

where D; r is the thermal diffusion coefficient of species i. The coefficient D; 7 has to be given in the units
m?/ K s regardless of the units used for concentration.

The velocity of the advecting fluid, ¥, is typically calculated by the Navier-Stokes equation and read in
from a restart file. All quantities can also be functions of, e.g., temperature that is given or solved by the
heat equation. Several advection-diffusion equations for different species 7 may be coupled and solved for
the same velocity field.

Given volume species sources S; can be prescribed. They are given in absolute mass units, i.e., kg/m?s.
If the equation is scaled to maximum solubility, the source term can be given in absolute mass units, or in
scaled units, S; sc = S;/Ci maz. Which is the default.

3.2.2 Boundary Conditions

For each species one can apply either a prescribed concentration or a mass flux as boundary conditions.
Dirichlet boundary condition reads as
Ci = Cip, (3.5)

or
Ci = Cip, (3.6)

depending on the units. If the concentration is scaled to maximum solubility, the Dirichlet boundary condi-
tions have to be given also in scaled values, z; = C; 4/C; maz- In all variations, the boundary value can be
constant or a function of time, position or other variables.

One may specify a mass flux 7; perpendicular to the boundary by

oC;
nen=—D;— = 3.7
Ji-1n an (3.7
In relative mass units, this may be written as
- o 801’
Ji-n= 7,0Di78 =g. (3.8)
n

Thus the units in the flux boundary condition are always kg/m?s except when the equation is scaled to
maximum solubility. In that case the default is to give flux condition in scaled units, gsc = 9/C; maw»
although the physical units are also possible.

The mass flux may also be specified by a mass transfer coefficient 3 and an external concentration Cl ¢

_p, 9

on = (Cz - Ci,ext)~ 3.9

On the boundaries where no boundary condition is specified, the boundary condition g = 0 is applied.
This zero flux condition is also used at a symmetry axis in 2D, axisymmetric or cylindrical problems.
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The equilibrium boundary condition on phase change boundaries under certain conditions is that the
relative amounts of the transported quantity are equal on both sides of the boundary,

(1) (2)
Cf _ G ; (3.10)
C( ) 0(2)

7, max 7, max

where the superscripts (1) and (2) refer to different sides of the boundary. This boundary condition is
automatically satisfied if the equation is scaled with the maximum solubilities Cl(]n)1 oz

However, the scaling causes a discontinuity into the mass flux of the species through the phase change
surface. The solver compensates this effect as long as such a boundary is flagged in the command file by the

user.

3.3 Keywords

Simulation
The simulation section gives the case control data:

Simulation Type String
Advection-diffusion equation may be either Transient or Steady State.

Coordinate System String
Defines the coordinate system to be used, one of: Cartesian 1D,Cartesian 2D, Cartesian
3D, Polar 2D, Polar 3D, Cylindric, Cylindric Symmetric and Axi
Symmetric.

Timestepping Method String
Possible values of this parameter are Newmark (an additional parameter Newmark Beta must
be given), BDF (BDF Order must be given). Also as a shortcut to Newmark-method with
values of Beta=0.0,0.5, 1.0 the keywords Explicit Euler, Crank-Nicolson,
and Implicit Euler may be given respectively. The recommended choice for the first order
time integration is the BDF method of order 2.

BDF Order Integer
Value may range from 1 to 5.

Newmark Beta Real
Value in range from 0.0 to 1.0. The value 0.0 equals to the explicit Euler integration method and
the value 1.0 equals to the implicit Euler method.

Solver solver id
The solver section defines equation solver control variables. Most of the possible keywords — related
to linear algebra, for example — are common for all the solvers and are explained elsewhere.

Equation String [Advection Diffusion Equation Varname]
The name of the equation, e.g., Advection Diffusion Equation Oxygen.

Variable String Varname
The name of the variable, e.g., Oxygen.

Procedure File "AdvectionDiffusion" "AdvectionDiffusionSolver"
The name of the file and subroutine.

Nonlinear System Convergence Tolerance Real
The criterion to terminate the nonlinear iteration after the relative change of the norm of the field
variable between two consecutive iterations k is small enough

Jur — up—1]| < €flugl],

where ¢ is the value given with this keyword, and w is either ¢; or C;.
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Nonlinear System Max Iterations Integer
The maximum number of nonlinear iterations the solver is allowed to do.

Nonlinear System Relaxation Factor Real
Giving this keyword triggers the use of relaxation in the nonlinear equation solver. Using a
factor below unity is sometimes required to achieve convergence of the nonlinear system. A
factor above unity might speed up the convergence. Relaxed variable is defined as follows:

uy, = Aug + (1= Nug_1,

where ) is the factor given with this keyword. The default value for the relaxation factor is unity.

Steady State Convergence Tolerance Real
With this keyword a equation specific steady state or coupled system convergence tolerance is
given. All the active equation solvers must meet their own tolerances for their variable u before
the whole system is deemed converged. The tolerance criterion is:

lJui — wi—1|] < €l|Ti|,

where e is the value given with this keyword.

Stabilize TLogical
If this flag is set true the solver will use stabilized finite element method when solving the
advection-diffusion equation with a convection term. If this flag is set to False, RFB (Residual
Free Bubble) stabilization is used instead (unless the next flag Bubbles is set to False in a
problem with Cartesian coordinate system). If convection dominates, some form of stabilization
must be used in order to succesfully solve the equation. The default value is False.

Bubbles Logical
There is also a residual-free-bubbles formulation of the stabilized finite-element method. It is
more accurate and does not include any ad hoc terms. However, it may be computationally more
expensive. The default value is True. If both Stabilize and Bubbles orsetto False, no
stabilization is used. This choice may be enforced in a problem with Cartesian coordinates, but
the results might be nonsensical. Both Stabilize and Bubbles should not be set to True
simultaneously.

Equation eqg id
The equation section is used to define a set of equations for a body or set of bodies.

Advection Diffusion Equation Varname Logical
If set to True, solve the advection-diffusion equation.

Convection String
The type of convection to be used in the advection-diffusion equation, one of: None, Computed,
Constant.

Concentration Units String
If set to Absolute Mass, absolute mass units are used for concentration. Recommended for
a compressible flow. Also possible to select Mass To Max Solubility which causes the
absolute mass formulation of the equation to be scaled by the maximum solubilities of each
material.

Body Forces bf id
The body force section may be used to give additional force terms for the equations. The following
keyword is recognized by the solver:

Varname Diffusion Source Real
An additional volume source for the advection-diffusion equation may be given with this key-
word. It may depend on coordinates, temperature and other variables, such as concentration of
other chemical species, and thus describe a source, a sink or a reaction term. Given in absolute
mass units or, in case of scaling, in the scaled units.
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Physical Units Logical True
With this keyword, the source term can be given in absolute mass units regardless of scaling.

Initial Condition ic id
The initial condition section may be used to set initial values for the concentration ¢;, C; or x;.

Varname Real

Material mat id
The material section is used to give the material parameter values. The following material parameters
may be effective when advection-diffusion equation is solved.

Convection Velocity 1 Real
Convection velocity 1= 1, 2, 3 for the constant convection model.

Density Real
The value of density of the transporting fluid is given with this keyword. The value may be
constant, or variable. For compressible flow, the density of the transporting fluid is computed
internally, and this keyword has no effect.

Compressibility Model String
This setting may be used to set the compressibility model for the flow simulations. Choices are
Incompressible and Perfect Gas. If set to the latter, the density is calculated from the
ideal gas law. Then also the settings Reference Pressure, Specific Heat Ratio
and Heat Capacity must be given.

Reference Pressure Real
With this keyword a reference level of pressure may be given.

Specific Heat Ratio Real
The ratio of specific heats (in constant pressure versus in constant volume) may be given with this
keyword. The default value of this setting is 5/3, which is the appropriate value for monoatomic
ideal gas.

Heat Capacity Real
For the compressible flow, specific heat in constant volume.

Varname Diffusivity Real
The diffusivity D given by, e.g., Oxygen Diffusivity. Can be a constant or variable. For
an anisotropic case, may also be a tensor D;;.

Varname Soret Diffusivity Real
The thermal diffusivity coefficient D given by, e.g., Oxygen Soret Diffusivity. Can
be a constant or variable.

Varname Maximum Solubility Real
The maximum solubility of the species in absolute mass units. Has to be a constant value.

Boundary Condition bc id
In advection-diffusion equation we may set the concentration directly by Dirichlet boundary condi-
tions or use mass flux condition. The natural boundary condition is zero flux condition.

Varname Real

Mass Transfer Coefficient Real

External Concentration Real
These two keywords are used to define flux condition that depends on the external concentration
and a mass transfer coefficient. This condition is only applicable to absolute mass formulation
of the equation (see keywords for Equation block).

Varname Flux Real
A user defined mass flux term in absolute mass units or, in case of scaling, in the scaled units.
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Physical Units Logical True
With this keyword, the flux boundary condition can be given in absolute mass units regardless of
scaling. Note that this keyword does NOT affect the Dirichlet boundary condition nor the mass
transfer coefficient bc.

Varname Solubility Change Boundary Logical True
This keyword marks the boundary over which the maximum solubility changes. Has to be present
for the mass flux continuity to be preserved.

Normal Target Body Integer bd id
In a solubility change boundary, this keyword can be used to control on which side the mass flux
compensation is done. Basically, this can be done on either side but there can be some effect on
the accuracy or on the speed of the solution. Recommended is to give as normal target the body
with less dense mesh, or the direction of average species transport. If normal target body is not
specified, the material with smaller density is used.
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Advection-Reaction Equation

Module name: AdvectionReaction

Module subroutines: AdvectionReactionSolver

Module authors: Mikko Lyly, Juha Ruokolainen, Thomas Zwinger
Document authors: Thomas Zwinger

Document edited: March 3rd 2009

4.1 Introduction

Advection-reaction equation describes the transport of a passive scalar quantity, c, by a fluid. The advected
quantity is assumed not to have an effect on the velocity field. Besides a reaction rate, advection-reaction
equation may have sources or sinks. If no reaction rate and source are given, this equation may be used to
trace passive scalars through a given flow-field. If a constant source of unity value is given, the equation also
may be used to evaluate the time a passive tracer has remained in the flow field.

4.2 Theory

4.2.1 Governing Equations

The advective transport of a scalar ¢ can be written as

@—&—U-VC—FFCZS, 4.1)
ot
where ' is the advection velocity, I is the reaction rate and S is a source/sink, depending on the sign.

Due to the absence of any diffusion, (4.1) has to be solved applying the Discontinuous Galerkin (DG)
method. Elmer implements the particular method as presented in [1]. In order to evaluated jumps across
partition boundaries in parallel computations, DG implies the utilization of halo-elements for domain de-
composition (see ElmerGrid manual for details).

4.2.2 Limiters

If the scalar has a lower, ¢y, < ¢ and/or an upper limit ¢ < c¢pax limit (where the limit can be also a
function of another variable), the variational form of (4.1) becomes a variational inequality. In order to
obtain a consistent solution a method using Dirichlet constraints within the domain is applied. The exact
procedure is the following:

1. construct the linear system: Ac¢ = g, with the system matrix A and the solution vector ¢ on the

—

left-hand side and the force vector .S on the right hand side
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2. set nodes as active if the constraint is violated

3. for active nodes the matrix and force vector are manipulated such that effectively a Dirichlet condition
C = Cmax/min 18 applied

—

4. the manipulated system is solved: Ai=S
5. aresidual is obtained from the un-manipulated system: R=A:-5§
6. an active node is reset if the residual is R < 0 (for lower limit) and R > 0 (for upper limit)

The whole algorithm is iterated (within the non-linear iteration loop) until the limit given in Nonlinear
System Convergence Tolerance is reached. In the converged solution the residual represents the
needed accumulation/volume flux (on matrix level, hence not in physical units) needed in order to obtain the
limited solution. Consequently, the system not necessarily is volume conserving if the Dirichlet method is
applied.

4.2.3 Boundary Conditions
At boundaries, a Dirichlet boundary condition reads as
C = Cp. 4.2)
By nature of the applied DG method, the condition above only applies at inflow boundaries, i.e., if
-y < 0, (4.3)

where 77, is the outwards facing surface normal of the boundary.
On the boundaries where no boundary condition is specified, the boundary condition ¢ = 0 is applied
upon inflow.

4.3 Keywords

Simulation
The simulation section gives the case control data:

Simulation Type String
Advection-reaction equation may be either Transient or Steady State.

Coordinate System String
Defines the coordinate system to be used, one of: Cartesian 1D,Cartesian 2D, Cartesian
3D, Polar 2D, Polar 3D, Cylindric, Cylindric Symmetric and Axi
Symmetric.

Timestepping Method String
Possible values of this parameter are Newmark (an additional parameter Newmark Beta must
be given), BDF (BDF Order must be given). Also as a shortcut to Newmark-method with
values of Beta=0.0,0.5, 1.0 the keywords Explicit Euler, Crank-Nicolson,
and Implicit Euler may be given respectively. The recommended choice for the first order
time integration is the BDF method of order 2.

BDF Order Integer
Value may range from 1 to 5.

Newmark Beta Real
Value in range from 0.0 to 1.0. The value 0.0 equals to the explicit Euler integration method and
the value 1.0 equals to the implicit Euler method.

Solver solver id
The solver section defines equation solver control variables. Most of the possible keywords — related
to linear algebra, for example — are common for all the solvers and are explained elsewhere.
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Equation String [Advection Reaction Equation Variable_name]
The name of the equation, e.g., Advection Reaction Equation Tracer.

Discontinuous Galerkin Logical
needs to be set to true

Variable String Variable_ name
The name of the variable, e.g., Tracer. As the variable is a DG variable (i.e., not renderable
e.g. in ElmerPost), the user usually adds the option —-nooutput in order to avoid output in the
output files

Procedure File "AdvectionReaction" "AdvectionReactionSolver"
The name of the file and subroutine.

Nonlinear System Convergence Tolerance Real
The criterion to terminate the nonlinear iteration after the relative change of the norm of the field
variable between two consecutive iterations k is small enough

llex — cr—1l] < ellekl],

where ¢ is the value given with this keyword.

Nonlinear System Max Iterations Integer
The maximum number of nonlinear iterations the solver is allowed to do.

Steady State Convergence Tolerance Real
With this keyword a equation specific steady state or coupled system convergence tolerance is
given. All the active equation solvers must meet their own tolerances for their variable ¢ before
the whole system is deemed converged. The tolerance criterion is:

llei — cial] < elleill,

where € is the value given with this keyword.

Limit Solution TLogical
Assumes the variational inequality method to apply, if set to true.

Exported Variable 1 String
in order to write the DG variable Variable_name to a for ElmerPost (non-DG mesh) read-
able variable, an exported variable with an arbitrary name (e.g., Exported Variable 1 =
Variable_name Nodal Result) has to be defined. It is then used to interpolate the DG
result to nodal values in order to display them.

Equation eg id
The equation section is used to define a set of equations for a body or set of bodies.

Convection String
The type of convection to be used in the advection-reaction equation, one of: None, Computed,
Constant.

Body Forces bf id
The body force section may be used to give additional force terms for the equations. The following
keyword is recognized by the solver:

Variable_name Source Real
defines the volumetric source for variable ¢

Initial Condition ic id
The initial condition section may be used to set initial values for the scalar c.

Variable_name Real
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Material mat id
The material section is used to give the material parameter values. The following material parameters
may be effective when advection-diffusion equation is solved.

Convection Velocity i Real
Convection velocity 1= 1,2, 3 for the constant convection model.

Variable_name Upper Limit Real
The upper limit, ¢, 5, for variable Variable_name. Only used if keyword Limit Solution
for the solver is set to t rue

Variable_name Lower Limit Real
The upper limit, ¢y, for variable Variable_name. Only used if keyword Limit Solution
for the solver is set to t rue

Variable_name Gamma Real
defines the reaction rate, I

Boundary Condition bc id

Variable_name Real sets the value for ¢ at inflow boundaries

Bibliography
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Linear Elasticity Solver

Module name: StressSolve

Module subroutines: StressSolver
Module authors: Juha Ruokolainen
Document authors: Juha Ruokolainen
Document edited: 22.04.2007

5.1 Introduction

This module computes displacement field from Navier equations. The Navier equations correspond to linear
theory of elastic deformation of solids. The material may be anisotropic and stresses may be computed as a
post processing step, if requested by the user. Thermal stresses may also be requested.

5.2 Theory
The dynamical equation for elastic deformation of solids may be written as
0%*d -
P@—V'Tzﬂ (5.1

where p is density, dis the displacement field, f given volume force, and 7 the stress tensor. Stress tensor is
given by N N N
7 = Cidklg,, — i (T —Typ), (5.2)

where ¢ is the strain and quantity C is the elastic modulus. The elastic modulus is a fourth order tensor,
which has at the most 21 (in 3D, 10 in 2D) independent components due to symmetries. In Elmer thermal
stresses may be considered by giving the heat expansion tensor (3 and reference temperature of the stress free
state Tj). The temperature field 7" may be solved by the heat equation solver or otherwise. The linearized
strains are given simply as:

e = %(fo +(Vd)T). (5.3)

5.2.1 Material laws

For isotropic materials the elastic modulus tensor may be reduced to two independent values, either the Lame
parameters, or equivalently to Youngs modulus and Poisson ratio. The stress tensor given in terms of Lame
parameters is:

T =2ue+ AV - dI — B(T — Ty)I, (5.4)
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where ;1 and A are the first and second Lame parameters respectively, (3 the heat expansion coefficient, and
1 is the unit tensor. Lame parameters in terms of Youngs modulus and Poisson ratio read

Y Y
A= —R, b=———- (5.5)
(14+ k)1 —2k) 2(1+ k)
except for plane stress situations (7, = 0) where X is defined as
Yk
A= ——. 5.6
Quantities Y and « are the Youngs modulus and Poisson ratio respectively.
For anisotropic materials, the stress-strain relations may be given in somewhat different form:
TV = Ee VvV, (5 7)

where Ty and ey are the stress and strain vectors respectively. The 6 x 6 matrix E (in 3D, 4 X 4 in 2D) is
the matrix of elastic coefficients. The stress and strain vectors are defined as

Tv = (T Ty Tz Tay Ty- TM)T (5.8)
and .
ev = (e €y €5 26y 26y, 264.) . (5.9)
In 2D the stress vector is
Tv =_(Tz Ty T2 sz)T (5.10)
and the strain vector .
ey = (ex €y €2 2eay) - (5.11)

When plane stress computation is requested 7, = 0, otherwise €, = 0. Cylindrically symmetric case is
identical to the 2D case, the components are given in the order of r, z, and ¢. The matrix F is given as input
for the anisotropic material model of Elmer.

5.2.2 Modal, harmonic and stability analysis

In addition to steady state and time dependent equations, modal, harmonic and stability analysis may be
considered. In modal analysis the Fourier transform of the homogeneous form of the dynamical equation is

-,

pwd =V -7(¢), (5.12)

or

w? /Q pPrr dQY = / 755 (@) (1) dS, (5.13)

where w is the angular frequency and q/_)' is the corresponding vibration mode.
When modal analysis of pre-stressed solids are considered, we first perform a steady analysis to compute
stress tensor, here denoted by o;;, and solve the variational equation

o Oy, O
w2/ﬂp¢)k¢)k dQ:/nJ( Yeis ( )dQ+/ 99 0%k 4 (5.14)

’L
J ('93[;z 6xj

The last term on the right-hand-side represents here the geometric stiffness due to external loads, thermal
stresses etc.
In stability analysis the buckling modes ¢ are obtained from

A / 99k 0 iy — / 723(8)ess () A, (5.15)

’L
J (‘330z 890]

where A is the margin of safety with respect to bifurcation (the current load can be multiplied by factor A
before stability is lost).
The equations may be interpreted as generalized eigenproblems and solved with standard techniques.
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5.2.3 Rayleigh damping
Damping may be taken into consideration using viscous damping or Rayleigh damping, in which it is as-
sumed that the damping matrix C' is proportional to the mass M and stiffness matrices K, or

C=aM+ K (5.16)

The identification of suitable damping coefficients o and 3 may be a difficult task.

5.2.4 Boundary conditions

For each boundary either a Dirichlet boundary condition

di = d° (5.17)
or a force boundary condition
T-n=g (5.18)

must be given. The default boundary condition is the natural boundary condition which implies that § = 0.
The user may give spring k£ or damping A coefficients on the boundary. These enable the introduction of

the force term in the form .
- od

G=kd+ \— 5.19

g + En (5.19)

which may be solved implicitely maintaining the linear form of the equation.

5.2.5 Model lumping

For linear structures it is possible to create a lumped model that gives the same dependence between force
and displacement as the original distributed model,

F=KD (5.20)

where F = (Fp Fy F. M, M, M,)T and X = (Dz Dy D, ¢g ¢y ¢.)T. However, the lumped model is not
uniquely defined as it depends on the force or displacement distribution used in the model lumping. In the
current model lumping procedure the lumping is done with respect to a given boundary. The lumped force
and momentum are then integrals over this boundary,

F; = / fidA. (5.21)
A
Lumped displacements and angles are determined as the mean values over the boundary,
D-—l/d-dA (5.22)
1T A A (2 . .

Therefore the methodology works best if the boundary is quite rigid in itself.

There are two different model lumping algorithms. The first one uses pure lumped forces and lumped
moments to define the corresponding displacements and angles. In 3D this means six different permutations.
Each permutation gives one row of the inverse matrix K . Pure lumped forces are obtained by constant
force distributions whereas pure moments are obtained by linearly varying loads vanishing at the center of
area. Pure moments are easily achieved only for relatively simple boundaries which may limit the usability
of the model lumping utility.

The second choice for model lumping is to set pure translations and rotations on the boundary and
compute the resulting forces on the boundary. This method is not limited by geometric constraints. Also
here six permutations are required to get the required data. In this method the resulting matrix equation is
often better behaving as in the model lumping by pure forces which may be a reason anonther reason to
favour this procedure.
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5.3 Keywords

Solver solver id
Note that all the keywords related to linear solver (starting with Linear System) may be used in
this solver as well. They are defined elsewhere.

Equation String [StressSolver]
A describing name for the solver. This can be changed but it must be given,

Procedure File "StressSolve" "StressSolver"
Name of the solver subroutine.

Eigen Analysis Logical
Modal or stability analysis may be requested with this keyword.

Eigen System Values Integer
The number of the lowest eigen states must be given with this keyword, if modal or stability
analysis is in effect.

Harmonic Analysis Logical
Time-harmonic analysis where the solution becomes complex if damping is defined. The solu-
tion algorithm assumes that the diagonal entries in the matrix equation dominates.

Frequency Real
The frequency related to the harmonic analysis. If the simulation type is scanning this may a
scalar function, otherwise it is assumed to be a vector of the desired frequencies.

Displace Mesh Logical
Should the mesh be deformed by the displacement field. The default is True except for eigen
and harmonic analysis.

Stability Analysis Logical
If set to t rue, then eigen analysis is stability analysis. Otherwise modal analysis is performed.

Geometric Stiffness Logical
If set to t rue, then geometric stiffness is taken into account in modal analysis.

Calculate Strains Logical
Computes the strain tensor of the solution.

Calculate Stresses Logical
If set to t rue the stress tensor will be computed. Also von Mises will be computed by default.

Calculate Principal Logical
Computes the principal stress components.

Calculate Pangle Logical
Calculate the principal stress angles.

Model Lumping Logical
If model lumping is desired this flag should be set to True.

Model Lumping Filename File
The results from model lumping are saved into an external file the name of which is given by
this keyword.

Fix Displacements Logical
This keyword defined if the displacements or forces are set and thereby chooces the model lump-
ing aklgorhitm.

Constant Bulk System Logical
For some type of analysis only the boundary conditions change from one subroutine call to
another. Then the original matrix may be maintaied using this logical keyword. The purpose is
mainly to save time spent on matrix assembly.
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Update Transient System Logical
Even if the matrix is defined constant it may change with time. The time may also be pseudo-time
and then for example the frequency could change with time thus making the harmonic system
different between each timestep. This keyword has effect only if the previous keyword is also
defined to be true.

Equation eg id
The equation section is used to define a set of equations for a body or set of bodies:

Stress Analysis Logical
if set to True, solve the Navier equations.
Plane Stress Logical

If set to True, compute the solution according to the plane stress situtation 7,, = 0. Applies
only in 2D.

Body Force bf id
The body force section may be used to give additional force terms for the equations.

Stress Bodyforce 1 Real
Stress Bodyforce 2 Real

Stress Bodyforce 3 Real
The keywords may be used to give volume force.

Stress Bodyforce 1 im Real
Stress Bodyforce 2 im Real

Stress Bodyforce 3 im Real
The keywords may be used to give volume force for the imaginary part. May be applied only to
harmonic solution of the equation.

Stress Load Real
Keyword for defining stress load for the body.

Strain Load Real
Keyword for defining strain load for the body.

Initial Condition ic id
The initial condition section may be used to set initial values for the field variables. The following
variables are active:

Displacement i Real
For each displacement component i= 1, 2, 3.

Material mat id
The material section is used to give the material parameter values. The following material parameters
may be set in Navier equations.

Density Real The value of density is given with this keyword. The value may be constant, or
variable.

Poisson Ratio Real
For isotropic materials Poisson ratio must be given with this keyword.

Youngs Modulus Real
The elastic modulus must be given with this keyword. The modulus may be given as a scalar for
the isotropic case or as 6 X 6 (3D) or 4 x 4 (2D and axisymmetric) matrix for the anisotropic
case. Although the matrices are symmetric, all entries must be given.

Rayleigh Damping Logical
Apply rayleig damping.
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Rayleigh Damping Alpha Real

Rayleigh Damping Beta Real
The parameters of Rayleigh damping.

Pre Stress Real
One may give prestress as an input to the solver.

Pre Strain Real
One may give prestrain as an input to the solver.

Heat Expansion Coefficient Real
If thermal stresses are to be computed this keyword may be used to give the value of the heat
expansion coefficient. May also be given as 3 x 3 tensor for 3D cases, and 2 x 2 tensor for 2D
cases.

Reference Temperature Real
If thermal stresses are to be computed this keyword may be used to give the value of the reference
temperature of the stress free state.

Rotate Elasticity Tensor Logical
For anisotropic materials the principal directions of anisotropy do not always correspond to the
coordinate axes. Setting this keyord to True enables the user to input Youngs Modulus matrix
with respect to the principal directions of anisotropy. Otherwise Youngs Modulus should be
given with respect to the coordinate axis directions.

Material Coordinates Unit Vector 1(3) Real [1 0 0]
Material Coordinates Unit Vector 2(3) Real [0 0.7071 0.7071]

Material Coordinates Unit Vector 3(3) Real [0 -0.7071 0.7071]
The above vectors define the principal directions of the anisotropic material. These are needed
only if Rotate Elasticity Tensor is set to True. The values given above define the
direction of anisotropy to differ from the coordinate axes by a rotation of 45 degrees about x-axis,
for example.

Mesh Velocity 1 Real
Mesh Velocity 2 Real

Mesh Velocity 3 Real
Keywords for giving the mesh velocity

Boundary Condition bc id
The boundary condition section holds the parameter values for various boundary condition types.
Dirichlet boundary conditions may be set for all the primary field variables. The one related to Navier
equations are

Displacement 1 Real
Dirichlet boundary condition for each displacement component i= 1, 2, 3.

Normal-Tangential Displacement Logical
The Dirichlet conditions for the vector variables may be given in normal-tangential coordinate
system instead of the coordinate axis directed system. The first component will in this case be
the normal component and the components 2, 3 two orthogonal tangent directions.

Normal Force Real
A force normal to the boundary is given with this keyword.

Force i Real
A force in the given in coordinate directions i= 1, 2, 3.

Force i Im Real
An imaginary part of the force in the given in coordinate directions 1= 1,2, 3. Applies only to
harmonic simulation.
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Normal Force Im Real
A imaginary part of the force normal to the boundary is given with this keyword. Applies only
to harmonic simulation.

Damping Real
Introduces a force proportional to velocity with the given coefficient. Also Damping i and
Damping 1i7j may be given.

Spring Real
Introduces a force proportional to displacement with the given coefficient. Also Spring i and
Spring 1ij may be given.

Stress Load Real
Keyword for defining stress load for the boundary.

Model Lumping Boundary Logical True
When using the model lumping utility the user must define which boundary is to be loaded in
order to determined the lumped model.
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Finite Elasticity

Module name: ElasticSolve

Module subroutines: ElasticSolver

Module authors: Mikko Lyly, Juha Ruokolainen, Mika Malinen
Document authors: Mika Malinen

Document edited: Jan 8, 2014

6.1 Introduction

This chapter is concerned with the equations which describe finite deformations of elastic solids. As the
region of space occupied by the body at time ¢ is not known in advance, it is not convenient to handle the
equations in the form that expresses the field equations on the deformed configuration. Therefore the associ-
ated boundary-value problem is formulated here by employing the reference configuration which equals to
the region occupied by the body before the deformation.

6.2 Field equations

Let ) denote the reference configuration, so that the region of space occupied by the body at the time ¢ is
given by
Qt = X(Q, t),
with x(-, ¢), for fixed ¢, a deformation of 2. If we define the displacement u(p, t) of the material point p € 2
by
U(p, ﬁ) = X(p, t) 2

the basic system of field equations describing finite deformations of the body {2 may then be written as

pou —Div § = pobo7
S =FS(C), 6.1)
F=I1+Vu, C=FTF,
where pg gives the density when the body is in the reference position, the tensor field S is referred to as
the first Piola-Kirchhoff stress, and by = bo(x(p, t),t) gives the body force measured per unit mass. The

response function S(C) generally characterizes the second Piola-Kirchhoff stress as a function of the right
Cauchy-Green tensor C. It is assumed here that either

S(C) = %[tr(C’ — DI +u(C—1T) (6.2)
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or, when the neo-Hookean material is assumed,

A

[(det F)> —1]C™ + u(I — C™1), (6.3)

with A and p the Lame material parameters. We note that a common way to express (6.2) uses the strain
tensor
E=1/2(C-1), (6.4)

so that the constitutive law (6.2) may be written as
S = Mr(E)I +2ukE.

As a further option, the constitutive law may be specified by defining a material response function which
gives the first Piola-Kirchhoff stress in terms of the Cauchy stress tensor 7'. This relation is written as

S(F) = (det F)T(F,p)F~T, (6.5)

where T = T(F, p) is the response function giving the Cauchy stress.

6.3 Boundary conditions and linearization

Boundary conditions may be obtained by prescribing the displacement and surface traction on complemen-
tary parts I'y and I's of the boundary 0f2, respectively. The displacement boundary condition is simply of
the form

u=1u(p,t), (6.6)

with 7 a prescribed vector field on I'y x [0, 7.
Handling surface traction is more involved. We here assume that the surface traction s on the deformed
surface x(I'2, t) is normal to the tangent plane of the deformed boundary surface, so that

S(.%', t) = g(ac, t)m(x),

where m(z) is the unit normal on the deformed configuration, x € x(I's, t) for any ¢, and g(x, t) is a given
scalar function. This can be shown to be equivalent to specifying the values of .S such that

Sn = g(detF)F~Tn onTy x [0,T], (6.7)

where n = n(p) is the normal vector to the boundary 9 and § = G(p,t) = g(x(p,t),t). The constraint
(6.7) gives rise to a nonlinear force term which is handled in the computational solution iteratively by using
a lagged-value approximation.

To handle the resulting system computationally, the constitutive law S = S(F') has to be linearized also.
This can be done in terms of the derivative D.S(F)[U] by using the approximation

S(Fr+1) = S(Fr) + DS(Fi)[Frey1 — Fil-
We then have
S(Fpt1) = S(Fy) + FyDS(Fy,)[Fyy1 — Fr] + (Fis1 — Fu)S(Fy) 4+ o(Fp1 — Fy).
In view of Fi41 — F), = Vugy1 — Vuy, this leads to the linearization

S(Fk+1) = S(Fk) + FkDg(Fk)[Vuk+1 — Vuk} + (Vukﬂ — Vuk)g(Fk)

_ _ _ _ (6.8)
= S(Fy) — FyDS(Fy,)[Vug]) — VurS(Fy) + FiDS(Fy)[Vug1] + Vugs1.S(Fr).

In the case of (6.2) the derivative of the response function is given by

DS(F)[Vv] = gtr[FTVv + Vo F|I + u[FTVv + Vol F,
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while
DS(F)[Vv] =A[det F*tr[VoF~1C(F)*+
{p— %[det F —1][det F +1]}C(F) FT'Vv + Vo F)C(F)™!

for the neo-Hookean material obeying (6.3). In the computation of the associated tangential stiffness matrix,
which result from substituting the approximation (6.8) into the discrete version of the weak formulation of
(6.1), the following self-adjointness property

FkDg(Fk)[VukH] -Vou + Vung(Fk) -V = FkDg(Fk)[V’U] - Vugs: + VU?(F;C) - Vug+1

is also used.

6.4 Stress and strain computation

In addition to solving for the displacement, the solver can produce the strain and stress fields associated with
the solution. In this connection the strain tensor is defined by (6.4). In the stress computation the material
description of the usual Cauchy stress 7" is produced. That is, we measure the surface force per unit area in
the deformed configuration and write T'(p, t) = T'(x(p, t),t). We note that this stress is related to one of the
Piola-Kirchhoff stresses as

T = (det F)"*SFT = (det F)"'FS(C)FT. (6.9)

6.5 Keywords

Material mat id
The following keywords relate to giving the material parameters for the finite elasticity solver.

Density Real
This keyword is used for defining the density field pg corresponding to the reference configura-
tion.

Poisson Ratio Real
The values of the scalar Lame material parameters depend on the Poisson ratio as in the case of
the linear elasticity solver. The Poisson ratio is given by using this keyword.

Youngs Modulus Real
The values of the scalar Lame material parameters depend on the Youngs modulus as in the case
of the linear elasticity solver. This keyword specifies the value of the Youngs modulus.

Solver solver id

Equation String [ElasticSolver]
A describing name for the solver. This can be changed but it must be given,
Procedure File "ElasticSolve" "ElasticSolver"
Name of the solver subroutine.
Neo-Hookean Material Logical
By default the constitutive law (6.2) is employed. Switching to the neo-Hookean material model
(6.3) can be performed by giving the value True for this keyword.

Calculate Strains Logical
If the value True is given for this keyword, the strains are also computed. The strain components
are output into an ordered six-tuple as (E,, Eyy E.. Eyy Ey, Eys).

Calculate Stesses Logical
If the value True is given for this keyword, the Cauchy stress (6.9) is also computed. The stress
components are output into an ordered six-tuple in the same way as the strain.

CSC —IT Center for Science (cc



6. Finite Elasticity 49

Body Force bf id
The body force section may be used to define volume forces.

Inertial Bodyforce j Real
This keyword may be used to give the component j of the body force field by measured per unit
mass. This considers correctly the density changes.

Stress Bodyforce j Real
This keyword may be used to give the component j of the body force field by measured per unit
volume. Note that for large displacement the density is not conserved and hence this force would
be more appropriate for some real volumetric forces, whatever they might be.

Boundary Condition bc id
Non-vanishing surface forces that are defined on the deformed configuration and have standard inter-
pretation in the deformed configuration (force per surface area on the deformed surface) can only be
given in the normal direction to the deformed surface. On the other hand, the Dirichlet conditions
(6.6) for the displacement variable of the solver can be given in the standard manner.

Normal Force Real
A surface force normal to the deformed boundary is given with this keyword.

CSC —IT Center for Science (cc



Model 7

Mesh Adaptation Solver

Module name: MeshSolve

Module subroutines: MeshSolver
Module authors: Juha Ruokolainen
Document authors: Juha Ruokolainen
Document edited: April 5th 2002

7.1 Introduction

Moving boundaries are often encourtered in different types of computations, i.e. Fluid-Structure-Interaction
(FSI) problems. Moving boundaries pose the problem of mesh adaptation to the boundaries. With this solver,
instead of generating the whole mesh afresh when a boundary is moved, the current mesh nodes are moved
so that the mesh hopefully remains ’good’. This type of solution only applies to cases where the changes
in geometry are relatively small. It is, however, often cheaper in terms of CPU time to use this module in
contranst to regenerate the whole mesh.

For time dependent simulations the mesh deformation velocity is also computed. The name of this
variable is Mesh Velocity.

7.2 Theory

The equation for elastic deformation of the mesh, given displacement of the boundaries, may be written as
-V.1r=0, (7.1)

where, d is the mesh displacement field and 7 the stress tensor.
The stress tensor given in terms of Lame parameters is:

T =2us + AV - dl (7.2)

where p and A are the first and second Lame parameters respectively, and [ is the unit tensor. The linearized
strains are given as:

1, -
€= 5(Vd + (Vd)1). (7.3)
Lame parameters in terms of Youngs modulus and Poisson ratio read
Yk Y
— — A= 7.4
=0 —2x) 2(1 + r) 74

Quantities Y and « are the Youngs modulus and Poisson ratio respectively. Note that in this context the
values of the material parameters are fictional, and may be chosen to help convergence or quality of the
resulting mesh.
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7.2.1 Boundary Conditions

For each boundary a Dirichlet boundary condition

di=d’ (7.5)
may be given. Usually this the displacement is given a priori or computed by, for example, the elasticity
solvers.

7.3 Keywords

Solver solver id
Note that all the keywords related to linear solver (starting with Linear System) may be used in
this solver as well. They are defined elsewhere.

Equation String [Mesh Update]
The name of the equation. If different from the default name Mesh Update then the following
two keywords must be defined as well.

Procedure File "NonphysicalMeshSolve" "NonphysicalMeshSolver"
Name of the solver subroutine.

Variable String
Name of the variable.

Equation eqg id
The equation section is used to define a set of equations for a body or set of bodies:

Mesh Update Logical
if set to True, solve the mesh adaptation equations.

Material mat id
The material section is used to give the material parameter values. The following material parameters
may be set in Navier equations.

Poisson Ratio Real
For isotropic materials Poisson ratio must be given with this keyword.

Youngs Modulus Real
The elastic modulus must be given with this keyword.

Boundary Condition bc id
The boundary condition section holds the parameter values for various boundary condition types.
Dirichlet boundary conditions may be set for all the primary field variables. The one related to Navier
equations are

Mesh Update i Real
Dirichlet boundary condition for each displacement component i= 1,2,3. The boundary dis-
placement may be computed some other solver. The computed displacment field then may be
used in the setting in the following way:

Mesh Update i Equals Displacement i with i=1,2,3. Including such lines in the
boundary condition setting will give the mesh update on the boundary directly from the dis-
placement solver.
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7.4 Examples
7.4.1 A Simple FSI computation using MeshSolver

In this simple computation Navier-Stokes equations are solved in the domain shown in the two pictures
below. On the left there is an inflow boundary, and on the right an outflow boundary. In the block inside the
flow domain (the mesh is not shown for the block), the elasticity equations are solved. The block is fixed at
the bottom, and is otherwise deformed by the fluid pressure and flow fields. The whole system is iterated as
follows:

e Solve fluid flow,
e Solve deformation of the block,
e Solve the fluid domain mesh with MeshSolver according to the displacements of the block,

until convergence is obtained.

Figure 7.1: The original computational mesh (up), and the mesh of the converged solution (down) of a FSI
computation.
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Elastic Linear Plate Solver

Module name: Smitc

Module subroutines: SmitcSolver

Module authors: Mikko Lyly, Jani Paavilainen
Document authors: Mikko Lyly, Peter Raback
Document created: August 26th 2002

8.1 Introduction

The linear elastic plate elements of Elmer are based on the shear deformable model of Reissner and Mindlin.The
finite element discretization is performed using the so called stabilized MITC-plate elements, which are free
from numerical locking.

8.1.1 Reissner-Mindlin model

The displacement % = (uy,uy,u,) of a Reissner-Mindlin plate (thin or moderately thick linearly elastic
body which in its undeformed reference configuration occupies the three dimensional region ) x (—%, %)
where (2 is the midsurface and ¢ the thickness) is obtained from the kinematic equations

us(@,y,2) = w(z,y) (8.3)

where 6, and 6,, are components of the rotation vector § = (6, 6,) and w is the transverse deflection of the
mid-surface, see Figure 1.
The functions w and § = (6, 0,) are determined from the condition that they minimize the total potential

energy
1

f/@:mdﬂ—&-/w-qdﬁ—/pwdﬁ (8.4)
2J)o= — Q- Q

where p is the transverse pressure load, £ = %(L@ + L@T) is the curvature of the mid-surface, v = Vw — ¢
is the transverse shear strain, m = £ : k is the bending moment, and ¢ = G - «y the transverse shear force
vector. The fourth order tensor F and second order tensor G define the bending and shear rigidities of the
cross section, respectively. For linearly elastic materials we have G - v = Gty and

E:n= K[+

- — VUV

(trs)1] (8.5)
where K = Et3/[12(1 — v?)] is the bending stiffness, E is Young’s modulus, G' shear modulus, and v
Poisson ratio. The design of the tensors £ and G for orthoropic and perforated materials is discussed in
section 8.3.
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The minimizer of the energy satisfies the equilibrium equations

V-m+q¢g=0 (8.6)
—V-qg=p (8.7)

8.1.2 Surface tension
When surface tension is present, the following term is added to the energy:

1
7/yw-7.ywd9 (8.8)
2 Jo

where 7 is a second order tensor representing the given normal force (usually 7" = T'I, where T is constant).
The equilibrium equation (8.7) is then rewritten as

V- (¢g+T -Vw)=p (3.9)

8.1.3 Boundary conditions
The following boundary conditions can be applied in the Reissner-Mindlin plate model:

e Soft fixed edge: w=0and 0 -n =0

Hard fixed edge: w =0and § =0

Soft simply supported edge: w = 0

Hard simply supported edge: w =0and § -t =0

Freeedge: m-n=0and (¢+7 -Vw) -n =0

The boundary conditions can of course be non-homogenous as well. For fixed and simply supported edges
the prescribed values of w, 6, 6 - n, and 0 - t, are taken into account on matrix level after finite element
discretization. On the free part of the edge, the non-homogenous case is trated by adding the following

terms in the energy:
/ gnw dI" + / m,, - 0.dl’ (8.10)
Tiree r

free

where g, = ¢ - n and m,, = m - n are prescribed functions.

8.1.4 Kirchhoff plates

When the thickness of the plate is small (f << diam(2)), the Reissner-Mindlin model can be considered
as a penalty approximation of the classical plate model of Kirchhoff. The Kirchhoff model is obtained from
(8.1)-(8.9) by enforcing the constraint v = 0. The governing equations are then reduced to

KAAw —TAw =1p (8.11)

8.1.5 Transient and natural mode analysis

A transient plate model is obtained by adding the interia term ptw on the left hand-side of (8.7), (8.9), and
(8.11). Here p is the density of the material. The natural vibration frequencies and mode shapes are then
obtained by taking p = 0 and solving the Fourier transformed equations.
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8.2 Finite element implementation

The direct minimization of (8.4) using the standard Galerkin finite element method fails due to the well
known numerical locking phenomena (the method is unable to deal with the Kirchhoff constraint v = 0,
which becomes valid when ¢ is small). In order to avoid locking, Elmer utilizes the so called SMITC
(Stabilization and Mixed Interpolation of Tensorial Components) elements, which are known to be optimally
convergent and work well under all conditions [4].

The linear element of the SMITC-family was first introduced by Brezzi, Fortin and Stenberg in [2]. The
method is defined by replacing the shear energy term in (8.4) by the following numerical modification:

/ 2, 4, 4 (8.12)
Q

where ) is called the reduced shear strain (sometimes also referred to as the assumed or substitute shear)
and g, = (t* + ah?)7'G - v, the reduced shear force. Here / is the mesh size (the diameter of the biggest
element) and o« > 0 is a numerical stabilization parameter (typically o = 0.15).

The reduced shear y L is defined elementwise such that

Tnk = (ax — bry,ax + cxx) (8.13)

for any element K. The parameters ax, bx, and cg, are determined from the conditions

/(l—lh)-éds=0 (8.14)
E

for every edge E of K. Here ¢ is the counterclockwise tangent to E.

It has been shown [3] that the linear SMITC-element is equivalent to the T3BL (Triangle, 3 nodes,
Linked Interpolation) element of Xu, Auricchio and Taylor [8, 1], the anisoparametrically interpolateed
MIN3 element of Tessler and Hughes [7], and the TRIA3 element of MacNeal [5]. We refer to [3] for a
more detailed discussion.

8.3 Elastic parameters for perforated plates

In microelectromechanical systems the plate stuctures are often perforated in order to reduce the squeezed-
film damping effect. This has also an effect on the elasticity equation. If there are so many holes that it is
not feasible to treat them individually their effect may be homogenized over the whole structure. In practice
this means that the original elastic parameters are replaced by effective parameters that take into account the
holes. This method was reported by Pedersen et al. [6] and implemented into the solver by Jani Paavilainen.

In the homogenization effective parameters for an ortotropic plate are defined so that the unperforated
model approximates the perforated plate. The basic idea is to set the analytical expressions of the deforma-
tion energies of the perforated and unperforated plates equal. This method is inherently limited to simple
geometries where analytical expressions may be found. So far, only square holes have been implemented in
the solver.

The unit cell of a perforated plate may be assumed to consist of one small square plate with side b — 2a,
and of four beams of length a as shown in Figure 8.1. Using approximate formulas an analytical formula for
the deformation energy of the perforated plate is obtained. This has to be equal to the deformation energy of
an unperforated ortoropic membrane. From this condition we get a set of equations from which the effective
parameters may be solved.

The elasticity tensor has three independent components, C1; = Cas, C1o = Caq, and Cyy. The expres-
sions for these are [6],

_ _E [blb—2a) | a(b—2a)?
Cn = Cxn= 12 { =2 b (8.15)
vE(b— 2a)
Cia = Cq = 0 =07 (8.16)
B E 12Ka(b — 2a)
Cu = wEiiy {2b(b ~2a) + bhs} . (8.17)
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basic
element

2a

Figure 8.1: The basic element of the perforated plate consisting of five rectangular beams

where K is a constant!, defined as

|

The midplane tension of the perfomarated plate may be reduced to lateral stresses of the ortotropic plate

by a simple scaling,
T =+/(1-4a%/b?) Ty, (8.19)

where is the tension 7} of the perforated plate. Using this reduced tension and the modified material param-
eters of equations (8.15), (8.16) and (8.17) the ortoropic plate mimics the behavior of the perforated plate
when looking at macroscopic quantities. However, the model is not suitable for approximating maximum
stresses around the holes, for example.

(1—-0.632522) (b—2a)3h, josh >b—2a

(1-063525) (b= 20)h%, josh < b~ 2a. (8.18)

W= Wl

8.4 Keywords

Solver solver id

Equation String SmitcSolver

Procedure File "Smitc" "SmitcSolver"
The procedure which inludes the linear plate model.

Variable String Deflection
This may be of any name as far as it is used consistently also elsewhere.

Variable DOFs Integer 3
Degrees of freedom for the deflection. The first degree is the displacment and the two following
ones are its derivatives in the direction of the coordinate axis.

Eigen Analysis Logical
Also the eigenvalues and eigenmodes of the elasticity equation may be computed. This is done
automatically by calling a eigensolver after the original equation has been solved. The default is
False.

'In article [6] there is an error in the definition of K. In the article there is an expression (b — 2a)/h3, which would make K
discontinuous at h = b — 2a.
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Eigen System Values Integer

If the eigenvalues are computed this keyword gives the number of eigenmodes to be computed.
The lowest eigenvalues are always solved for.

Hole Correction Logical

If the plate is perforated the holes may be taken into account by a homogenized model. This is
activated with this keyword. The default is False.

Procedure File "Smict" "SmitcSolver"
Material mat id

Density Real
Density of the plate.

Poisson ratio Real
Youngs modulus Real
The elastic parameters are given with Youngs modulus and Poisson ratio.
Thickness Real
Thickness of the plate.
Tension Real
The plate may be pre-stressed.
Hole Size Real
Hole Fraction Real
If Hole Correction is True the solver tries to find the size and relative fraction of the
holes. If these are present the hole is assumed to be a square hole.

Boundary Condition bc id

Deflection i Real
Dirichlet BC for the components of the deflection, i=1,2,3.

Body Force bf id

Pressure Real

Possibility for a body forces. For coupled systems there is a possibility to have up to three forces.
The two others are then marked with Pressure Band Pressure C.

Spring Real
The local spring which results to a local force when multiplyed by the displacement.
Damping Real

The local damping which results to a local force when multiplyed by the displacement velocity.
The spring and damping may also be defined as material parameters.
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9.1 Introduction

This module solves the Helmholtz equation, which is the Fourier transform of the wave equation. In addition
to the basic equation the solver may take into consideration variable density, background convections field,
simple damping and special boundary conditions with other time-harmonic solvers.

9.2 Theory

For example, sound propagation in air is fairly well described by the wave equation:
1 9%
S -5 — Vp=0. 9.1
2o p (CRY

When linear the equation may be written in frequency space as
KP4+ V2P =0, 9.2)

where £k = w/c. This is the Helmholtz equation. The instantaneous pressure may be computed from the
given field P: _
p(t) = R(Pe™') = R(P) cos(wt) — I(P) sin(wt), 9.3)

where ¢ = v/—1 is the imaginary unity.
In Elmer the equation has an added term which is proportional to first time derivative of the field, where-
upon the equation becomes
(k* —ikD)P + V?P = 0, (9.4)

where D is the damping factor.

9.2.1 Boundary Conditions

The usual boundary condition for the Helmholtz equation is to give the flux on the boundary:

VP.i=g, 9.5)
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also Dirichlet boundary conditions may be set. The Sommerfeldt or far field boundary condition is as follows

VP i+ Yp=o, (9.6)
Z
where the complex-valued quantity Z may be defined by the user. It is noted that incoming and outgoing
waves may be approximated by setting Z = =c, respectively.

A special kind of flux condition is one with a given harmonic velocity field that is obtained from a
harmonic solution of a flow or structure equation. When the velocity field ¥’ is given then the flux is obtained
from

g=1iwpt-n 9.7

where p is the fluid density. If harmonic displacement is given instead a further term iw appears in the
equation.

9.3 Keywords

Simulation
This section gives values to parameters concerning the simulation as whole.

Frequency Real
Give simulation frequency in units of 1/s. Alternatively use the Angular Frequency key-
word.

Angular Frequency Real
Give simulation frequency in units of 1/rad. Alternatively use the Frequency keyword.

Solver solver id
Note that all the keywords related to linear solver (starting with Linear System) may be used in
this solver as well. They are defined elsewhere. Note also that for the Helmholtz equation ILUT
preconditioning works well.

Equation String [Helmholtz]
The name of the equation.

Procedure File ["HelmholtzSolve" "HelmholtzSolver"]
This keyword is used to give the Elmer solver the place where to search for the Helmholtz
equation solver.

Variable String [Pressure]
Give a name to the field variable.

Variable DOFs Integer [2]
This keyword must be present, and must be set to the value 2.

Bubbles Logical
If set to True this keyword activates the bubble stabilization.

Use Density Logical
Historically the solver was able to solve only cases with constant density when it may be elimi-
nated. If the density is however not constant this flag must be set True.

Velocity Variable Name String
If there is a Flow Interface then the name of the harmonic velocity variable may be speci-
fied. The default is F1ow. Note that normal real valued velocity field is not suitable.

Displacement Variable Name String
If there is a Structure Interface then the name of the harmonic displacememt variable
may be specified. The default is Displacement. Note that normal real valued displacement
field is not suitable, its complex valued eigenmode however is.

Displacement Variable Eigenmode Integer
If eigenmode is used for the interface this keyword is used to specify the number of the mode.
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Displacement Variable Frequency Logical
If eigenmode is used for the interface this keyword may be used to choose the frequency to be
the frequency of the computed eigenmode.

Equation eg id
The equation section is used to define a set of equations for a body or set of bodies:

Helmholtz Logical
If set to True, solve the Helmholtz equation, the name of the variable must match the Equation
setting in the Solver section. Alternatively use the Active Solvers keyword.

Initial Condition ic id
The initial condition section may be used to set initial values for the field variables. The following
variables are active:

Pressure i1 Real
For each the real and imaginary parts of the solved field 1= 1, 2.

Material mat id
The material section is used to give the material parameter values. The following material parameters
may be set in Helmholtz equation.

Sound Speed Real
This keyword is use to give the value of the speed of sound.

Sound Damping Real
This keyword is use to give the value of the damping factor D in equation 9.4.

Density Real
If sound density is varying the density must be specified and its use must be enforced by the Use
Density keyword.

Convection Velocity i1 Real
If the pressure field is convected by a background velocity field (as in the Doppler effect) then
this keyword is used to give the velocity field.

Body Force bf id

Pressure Source i Real
The pressure sources of the real (¢ = 1) and complex (: = 2) parts. The use of this is rather
seldom.

Boundary Condition bc id
The boundary condition section holds the parameter values for various boundary condition types.
Dirichlet boundary conditions may be set for all the primary field variables. The one related to
Helmbholtz equations are

Pressure i Real
Dirichlet boundary condition for real and imaginary parts of the variable. Here the values i= 1, 2
correspond to the real and imaginary parts of the unknown field.

Wave Flux 1,2 Real
Real and imaginary parts of the boundary flux. Here the values 1= 1,2 correspond to the real
and imaginary parts of the boundary flux.

Wave Impedance 1,2 Real
This keyword may be used to define the real and imaginary parts of the quantity Z in (9.6). Here
the values i= 1, 2 correspond to the real and imaginary parts of Z.

Flow Interface Logical
Use harmonic velocity field to set the flux.
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Structure Interface Logical
Use harmonic displacement field to set the flux.
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10.1 Introduction

The basic acoustic equations such as the Helmholtz equation, which is frequently taken as the starting point
in acoustic analyses, are based on the assumption of lossless flow, i.e. the effects of viscosity and heat
conduction are neglected. These effects are significant, however, in thin zones near a solid boundary. In this
chapter, a system of acoustic field equations taking into account the effects of viscosity and heat conduction
is described. Consideration is confined to the time-harmonic solution of these equations.

10.2 Mathematical model

The acoustic field equations may be derived using the general principles of continuum mechanics and supple-
menting these equations by suitable constitutive equations applicable for the fluid flow. Here the linearized
versions of such equations are used to derive an approximate system of field equations appropriate to the
small-amplitude acoustics problem.

In the following the velocity, density, pressure and temperature fields associated with the flow are denoted
by ¥, p, p and T, respectively. The notations pg, pg and Ty are used for the values of the density, pressure
and temperature at the equilibrium state.

10.2.1 The field equations

Consider the acoustic equations based on the linearized equation of motion, the constitutive equation relating
the stress to the motion for a Newtonian fluid, the kinematic relation, the linearized continuity equation and
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the linearized energy equation

ov _ R
Pog, = V-G + pob,
G =—pl + \(V - 9)I +2uD(?),
D(7) = (Vi + ViT), (10.1)
dp
a - _POV %)
du

po gy = KAT — poV - U+ poh.

Here 7 is the stress tensor, b is the body force (per unit mass), A and p are parameters characterizing the
viscosity of the fluid, u is the specific internal energy,  is the heat conductivity and & is the internal supply
of heat.

We supplement the system (10.1) by suitable equations of state assuming that the properties of the
medium are expressible as functions of two state variables, say the temperature and density. We denote
the specific entropy (entropy per unit mass) and its equilibrium value by s and sy and assume that the rela-
tion

du = Tyds + (po/p3)dp (10.2)
is valid. In addition, we approximate the equations which give the changes of pressure and specific entropy
in terms of the changes of the state variables by

_ ('7 - 1)pOCV (’Y - 1)CV
P—Dpo= T(T—TO)‘F TﬁQ(P—PO) (10.3)
and C Cy( 1)
_ v vy — _
5— 80 = 2 (T —1Tp) “TopeB (p = po), (10.4)

where C'y is the specific heat at constant volume (per unit mass), -y is the ratio of the specific heats at constant
pressure and constant volume and /3 is the coefficient of thermal expansion defined by

1,0
8= _;(i)p_ (10.5)

Confining consideration to the time-harmonic case, the solutions of the primary unknowns are assumed
to be of the form
Uz, t) = U(x) exp(iwt),
p(x,t) = po + p(x) exp(iwt), (10.6)
T(x,t) = To + T(z) exp(iwt),
where w is the angular frequency. By the substitution of (10.6), the system of field equations based on

(10.1)—(10.4) may be reduced to a system where the only unknown fields are the amplitudes ¥(z) and T'(x)
of the disturbances of the velocity and temperature fields. The reduced system may be written as

] (v — 1 -
iwpoir+ D= DOV Gr (DO G G A = po,
BT wTpB? (10.7)
-1 :
—kAT 4+ iwpgCy T + %V - U = poh.

It is noted that after the solution of the velocity and temperature the amplitudes p(z) and p(z) of the distur-
bances of the pressure and density fields can readily be obtained from the relations

—1)C :
p= (v % V'OO(T—i—LV-U),
Ao wp (10.8)
p=2v.5
w
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For numerical approximation the system (10.7) is rewritten as a mixed problem; to motivate this, see [2].
The mixed formulation is written as

T — iV — iV +ieV(V - T) + ieAT = —(i/w)b,

i€ A 1 n 1 _ih
(—D08~ T A—1 T 1tinken”  BTow?’ (10.9)
- - vk?
W 1+i’yk2677¢ ’

where ¢ is an auxiliary unknown, 7 is the scaled temperature defined by

wf
and o N
P Y (10.11)
c pow K o
with c the adiabatic sound speed defined by the relation
ToB%c = v(y —1)Cy. (10.12)

It should be noted that although the solver of the acoustic equations is based on the formulation (10.9), the
solver overwrites the approximations of 7 and ¢ by the unscaled temperature and the pressure, which may
be expressed as
1
1+ diyk2en
It is assumed that 3 = 1/T}. This value is obtained by evaluating the coefficient of thermal expansion
for the equilibrium values of the state variables in the case of an ideal gas.

p = pow(T + o). (10.13)

10.2.2 Boundary conditions

Suitable boundary conditions must be adjoined to the field equations (10.1). In a usual manner, one may
specify any component of the velocity vector on the boundary. Alternatively, if the component of the velocity
vector is not specified at a point on the boundary, the corresponding component of the surface force vector
may be prescribed. Similarly, as a boundary condition for the energy equation one may specify either the
disturbance of the temperature or zero heat flux (the default boundary condition) on the boundary.

Specifying two impedances on the boundary provides an alternative way of prescribing boundary con-
ditions in the normal direction to the boundary. Firstly, one may specify the specific acoustic impedance Z
which is defined to be the ratio of the normal component of the surface force vector (which equals to the
pressure in the case of a nonviscous Newtonian fluid with no bulk viscosity) to the normal component of the
velocity vector at a point on the boundary, i.e. one may specify

n-on

7 =
v

— )

where 77 is the outward unit normal vector to the boundary. Secondly, one may prescribe the ratio of the heat
flux to the disturbance of the temperature at a point on the boundary by specifying

Zr = VT (z) 7
T(x)
For example, outgoing waves may be approximated by setting Z = —pgc and Zp = —iw/c on the outflow

boundary.
Slip boundary conditions may also be used. The velocity slip boundary condition relating the tangential
component of the surface force vector to the tangential velocity jump at a point on the boundary is written in

the form
Co

(2('7 - 1)CV(T0 + Tw)

o v ) 2p0(5 = 5, - D),

n-t=

Qll
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where # is a tangent vector to the boundary, ¢, is the momentum accommodation coefficient and T, and
¥, are the reference wall temperature and velocity. Here the reference wall temperature is defined to be the
deviation of the wall temperature from the equilibrium temperature 7. The similar boundary condition for
the heat flux is given by

7CT(’Y + 1) (2(’}/ — 1)Cv(TO + Tw)

VT i =
YT T ) 71'

)1/2POCV(T - Tw)v

where cr is the energy accommodation coefficient.

10.3 The use of block preconditioning

The finite element approximation of the system (10.9) leads usually to large linear systems which have to
be solved using preconditioned iterative methods. The general preconditioners available in Elmer may not
always work satisfactorily well when the size of the system becomes larger and larger. To facilitate the
solution of large problems, a problem-specific strategy for solving the linear systems that arise from the
discretization of (10.9) has been developed. We describe the essential features of this solution method in this
section; for a full description see [1].

The solution strategy discussed here is based on using nested GCR iterations in combination with a
special block-preconditioner. Given the linear system

KU=F

the standard GCR method generates a sequence of improving approximations such that each iterate U(*)
minimizes || — KU®)|| over the so-called Krylov subspace. The standard algorithm can be modified
easily so that the update direction can be chosen flexibly. Obviously, an optimal update direction would be
given by the current error e(*) = U — U To find an approximation to the error one may apply an iterative
method to

Ke®) = (ko)

where r*) = F — KU®) is the residual. The preconditioned GCR algorithm which employs this idea to
find the update direction can be described as follows:

Form an initial guess U (%)
r0 = _ gy
k=0
while (Stopping criterion is not met)
Solve K s(+1) = (k) jteratively using at most m iteration steps
o) — gkt
doj=1,k
o) = y(k+D) ) (0) p(kt1) 5 ()
s+ = g(k+1) _ < () y(k+1) 5 ()
end do
B — (k1) /|| (k4D |
glk+1) — 5(k+1)/”v(k+1)|
U+ Z g4 < k1) () 5 g(k+1)
1) (B (o4) g (R) 5 (D)
k=k+1

end while

Here the inner product and norm are defined by < v,r >= - r and ||v|| =< v,v >'/2. The GCR iteration
steps used to update the approximation of U are referred to as outer iterations, while the iteration steps of
the preconditioning iterative method used for solving the new search direction s(**+1) are referred to as inner
iterations.
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Here the GCR algorithm is also used as the inner iterative method. In connection with the inner iterations
a special block-preconditioner is used. The preconditioning is done by solving approximately the block-
triangular system of the form

*

A B B>’< O Sy Ty
0 ¢ D 0 s | | rr
0 E G H||se| |rs]|’ (10.14)
0o 0 0 M " ro

where s,, s, and s are update directions for the errors of v, 7 and ¢. In addition, 7 is an auxiliary unknown
which has been introduced so as to handle the boundary conditions of the preconditioner is a consistent way.
In practice, an approximate solution of (10.14) is constructed by applying iterative methods to the systems
of the type

My =1y, (10.15)
C D sr | | T
[EGH%}_[%} (1010
and
As, = Ty, (10.17)

where 7y and 7, are modified right-hand sides the computation of which requires the evaluation of certain
matrix-vector products. The special solver discussed hence requires that iterations are performed on three
levels.

One of the key ideas in the nested application of the GCR algorithm is that the outer iteration can be
made rapidly convergent. Consequently the optimality of the outer iteration need not be sacrificed by using
such techniques as restarting or truncation. A few inner iterations are usually enough to produce a useful
reduction in the outer iteration residual. Therefore the maximum number of iterations the inner iterative
method may take need not be large. We have found that limiting the number of inner iterations by taking
m = 5 (this is the default value) or m = 10 leads often to an efficient method. In addition to specifying
the maximum number of inner iterations, the user can control the residual reduction in the outer iteration
process by specifying the error tolerance ;e SO that the inner GCR iteration is stopped if

75 — KD < G|, (10.18)

where 5(*+1) is the approximation to s**1). The default value of &i,pe, is 0.1.

Ideally a mild stopping criterion should be used in the solution of the linear systems of the type (10.15)-
(10.17) which arise in the block-preconditioning of the inner iteration. The iterative solution of (10.15) being
a cheap operation, the overall cost of the block-preconditioning is essentially determined by the solution of
the systems of the type (10.16) and (10.17). These systems are solved using the preconditioned BiCGStab(l)
method. In this connection the Jacobi and incomplete LU factorization preconditioners can be applied.

10.4 Utilities

The dissipative acoustics solver may be used in resolving the acoustic impedance of a system. The value of
the impedance defined by
I s, P ds

J s, - (—1) dS
may automatically be calculated for a given boundary .S;. Here this impedance will be referred to as the
specific acoustic impedance of the surface (.5;).

The acoustic impedance is divided into two parts, a part in phase with velocity and a part out of phase
with velocity. The value of the impedance z; is meaningful only when the velocity on the input boundary is
considered. It is though possible to calculate the response over an other boundary S; and to compare it to
the input velocity, i.e. one may compute

(10.19)

Z; =

L fsjpdS
Yo fsizT(—T_i) ds’

This impedance is here called the cross specific acoustic impedance.

(10.20)
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10.5 Keywords

The following keywords are particularly related to the acoustics solver.

Simulation

Angular Frequency Real
This keyword is used to declare the angular frequency. Alternatively one may define the fre-
quency by using the Frequency keyword.

Frequency Real
This keyword is used to declare the frequency. Alternatively one may define the angular fre-
quency by using the Angular Frequency keyword.

Simulation Type String
The value of this keyword should be either Steady State or Scanning. The value Scanning
may be used to obtain results for several frequencies by using a single sif-file.

Coordinate System String
The coordinate system must be set to be one of the following options: Cartesian 2D,Cartesian
3DorAxi Symmetric.

Solver solver—id

The following keywords may be used in the solver section that contains solver parameters for the
acoustics solver.

Equation String
This keyword can be used to give a name for the discrete acoustic equations

Procedure File Acoustics AcousticsSolver
This keyword is used to give the Elmer solver the place where to search for the acoustics solver.

Variable String Flow

The name F1ow is used for the solution of the acoustics equations consisting of the amplitudes
of the disturbances of the velocity, temperature and pressure from the equilibrium state (note that
the disturbance of the density is not computed explicitly). The acoustics solver uses a convention
that if dim is the coordinate system dimension then the components 1, ..., 2 x dim of F1ow give
the real and imaginary parts of velocities (Flow.1 and Flow.2 are the real and imaginary
parts of the first velocity component, etc.). The temperature and pressure solutions come after
the velocity solution.

Variable Dofs Integer
The value of this keyword should equal to 2 x (dim + 2) where dim is the coordinate system
dimension.

Element String
The use of standard finite elements in the approximation of the acoustic equations is likely to
lead to an unstable method. The finite element formulation can be stabilised by using additional
bubble finite element functions in the approximation of velocities. If this keyword is given the
valuep:1 Db:n, withn aninteger, then n additional bubble functions contained in the p-element
library are used in the approximation of each velocity component.

Bubbles in Global System Logical
This keyword should be given the value False, so that the additional bubble basis functions
needed for the stability are eliminated via the static condensation.

Utilize Previous Solution Logical
If a single sif-file is used to compute the solutions for several frequencies, then the previous
solution can be used as an initial guess for the next iterative solution. This can be done by giving
the value True for this keyword.

Material material-id

CSC —IT Center for Science (cc



10. The linearized Navier-Stokes equations in the frequency domain 69

Specific Heat Real
This keyword is used to define the specific heat (per unit mass) at constant volume.

Specific Heat Ratio Real
This keyword is used to define the ratio of the specific heats at constant pressure and constant
volume.

Equilibrium Density Real
This keyword is used to declare the density at the equilibrium state.

Equilibrium Temperature Real
This keyword is used to declare the absolute temperature at the equilibrium state.

Heat Conductivity Real
This keyword is used to define the value of the heat conductivity.

Viscosity Real
This keyword is used to define the value of the viscosity .

Bulk Viscosity Real
The material parameter ) is determined by giving the bulk viscosity «’ defined by " = A+2/3 .
If the value of this keyword is not given, the Stokes condition is assumed, i.e. the value of A is
determined by the condition x’ = 0.

Re Heat Source Real
This keyword is used to define the real part of the heat source (per unit mass).

Im Heat Source Real
This keyword is used to define the imaginary part of the heat source (per unit mass).

Re Body Force i Real
This keyword is used to define the real part of the i’s component of the body force vector (per
unit mass).

Im Body Force i1 Real
This keyword is used to define the imaginary part of the i’s component of the body force vector
(per unit mass).

Boundary Condition bc—-id

Re Velocity 1 Real
This keyword is used to prescribe the real part of the i’s component of the velocity vector.
Im Velocity 1 Real
This keyword is used to prescribe the imaginary part of the i’s component of the velocity vector.

Re Temperature Real
This keyword is used to prescribe the real part of the amplitude of the disturbance of temperature.

Im Temperature Real
This keyword is used to prescribe the imaginary part of the amplitude of the disturbance of
temperature.

Re Surface Traction i Real
This keyword is used to define the real part of the i’s component of the surface force vector.

Im Surface Traction i Real
This keyword is used to define the imaginary part of the i’s component of the surface force vector.

Re Specific Acoustic Impedance Real
This keyword is used to define the real part of the ratio of the normal component of the surface
force vector to the normal component of the velocity vector at a point on the boundary.

Im Specific Acoustic Impedance Real
This keyword is used to define the imaginary part of the ratio of the normal component of the
surface force vector to the normal component of the velocity vector at a point on the boundary.
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Re Specific Thermal Impedance Real
This keyword is used to define the real part of the ratio of the normal derivative of temperature
to the disturbance of the temperature at a point on the boundary.

Im Specific Thermal Impedance Real
This keyword is used to define the imaginary part of the ratio of the normal derivative of temper-
ature to the disturbance of the temperature at a point on the boundary.

Slip Boundary Logical
The value of this keyword should be set to be True if slip boundary conditions were given.

Momentum Accommodation Coefficient Real
This keyword is used to define the momentum accommodation coefficient ¢, .

Energy Accommodation Coefficient Real
This keyword is used to define the energy accommodation coefficient cr.

Re Reference Wall Velocity i Real
This keyword is used to prescribe the real part of the i’s component of the reference wall velocity.

Im Reference Wall Velocity i Real
This keyword is used to prescribe the imaginary part of the i’s component of the reference wall
velocity.

Reference Wall Temperature Real
This keyword is used to define the reference wall temperature.

Calculate Acoustic Impedance Logical
This keyword is used to define the boundary for which the specific acoustic impedance z; is
calculated.

Impedance Target Boundary Logical
When calculating the cross impedance z;;, this keyword defines the boundary S;. The input
velocity boundary (5;) is defined using the Calculate Acoustic Impedance keyword.

The following keywords are related to the use of block preconditioning and may be given in the Solver
section.

Solver solver—id

Block Preconditioning Logical
The value of this keyword should be set to be True to enable the use of block preconditioning.

Max Outer Iterations Integer
The value of this keyword defines the maximum number of outer iterations.

Max Inner GCR Iterations Integer
This keyword is used to define the value of the parameter m, i.e. the maximum number of inner
iterations. The default value is 5.

Ratio of Convergence Tolerances Real
This keyword is used to define the stopping criterion for the outer iteration. The outer iteration
is stopped when

IF = KU oo < (g7 % &) (1K o IU ™ |oo + 1 Floc)-
Here ¢, is defined using this keyword and ¢ is the value of the Linear System Convergence

Tolerance keyword. Having €, < 1 is desirable.

Residual Reduction Ratio Real
This keyword is used to define the value of the parameter d;,y,¢, in the stopping criterion (10.18).
The default value is 0.1.
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Linear System Convergence Tolerance Real
In connection with the block-preconditioning the keyword Linear System Convergence
Tolerance defines the stopping criterion used in connection with the iterative solution of
(10.16) and (10.17). In this connection the stopping criterion of the type

175 — s < el

is used. Here ¢ is the value of this keyword. It is noted that the solution accuracy of (10.15) need
not be specified by the user.

Velocity Convergence Tolerance Real
The systems (10.16) and (10.17) may solved with different degrees of accuracy. Instead of using
the Linear System Convergence Tolerance keyword one may specify the solution
accuracy for (10.17) by using this keyword.

Schur Complement Convergence Tolerance Real
The systems (10.16) and (10.17) may solved with different degrees of accuracy. Instead of using
the Linear System Convergence Tolerance keyword one may specify the solution
accuracy for (10.16) by using this keyword.

Linear System Max Iterations Integer
In connection with the block-preconditioning the Linear System Max Iterations key-
word is used for defining the maximum number of iteration steps which can be taken in the
iterative solution of (10.15)—(10.17).

Velocity Assembly Logical
The coefficient matrix A in (10.17) corresponds to the (1,1) block of the coefficient matrix K.
As the elements of A can be extracted from K, the assembly of A can be avoided if a diagonal
preconditioning is used in the iterative solution of (10.17). If an incomplete factorization pre-
conditioner is used, the matrix A is assembled explicitly. In this case the value True must be
given for this keyword.

ILU Order for Schur Complement Integer
The value of this keyword defines the fill level for the incomplete LU factorization preconditioner
that is applied in the iterative solution of the linear systems of the type (10.16).

ILU Order for Velocities Integer
The value of this keyword defines the fill level for the incomplete LU factorization preconditioner
that is applied in the iterative solution of the linear systems of the type (10.17). If this keyword
is not given, then a diagonal preconditioning is used. This keyword has an effect only when the
Velocity Assembly keyword is given the value True.
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Large-amplitude wave motion in air

Module names: CompressibleNS
Module subroutines: CompressibleNS
Module authors: Mika Malinen
Document authors: Mika Malinen
Document edited: Aug 14, 2012

11.1 Introduction

This module contains a monolithic solver for the compressible Navier—Stokes equations subject to the ideal
gas law. It can be used to model the fully nonlinear wave propagation in the time domain.

11.2 Mathematical model

The acoustic wave motion in a fluid is generally characterized by the compressional Navier—Stokes equa-
tions. If the medium obeys the ideal gas law, so that the fluid pressure p satisfies

the Navier—Stokes system may be reduced to consist of the equation of motion

p[% + (- V)U] — pAT — (u+ A)V(V - 0) + RpVT + RTVp = b, (11.2)
the energy equation
T
pC’v(aa—t+17~VT)—KAT+RpTV-17=O, (11.3)
and the continuity equation
%+17-Vp+pv~6':0. (11.4)

Here ¥, p and T are the fluid velocity, density and temperature, respectively, and the material properties are
expressed in terms of the viscosity parameters 1 and A, the heat conductivity K and the specific heat Cy/,
with R = (v — 1)Cy.

If po and Tj are the equilibrium values of density and temperature, we may then write

p=po+6, T=To+r, (11.5)

so that ¢ and 7 give the disturbances in p and 7. To solve the coupled system consisting of (11.2)—(11.4) the
fully implicit time integration is employed. At each time level a nonlinear iteration is thus applied. Given
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nonlinear iterates v, 7 and dx, new approximations are generated via

(po + k) [(Ve) k41 + (Uk - V)Uhy1] — pATp1 — (0 + A)V(V - Tpy1)

+ R(po + 0k)Vis1 + R(To + ) Va1 = b,
(po + 0k)Cv [(Te) k41 + Tk - VTiy1) — KATL 1 + R(po + 01)(To + )V - Tpy1 = 0,
(Pt)k+1 + Tk - Vogr1 + (po + 0,)V - U1 = 0,

(11.6)

with the time derivatives approximated using suitable finite difference schemes. It is recommended that the
BDF(2) method is used for the time discretization. It is also noted that the pressure is not approximated
directly, so it has to be computed separately using (11.1) and (11.5).

It should be noted that the solver is tailored to the case of the lowest-order continuous temperature and
density approximation. To obtain stable finite element solutions the velocity discretization must be enhanced
by using elementwise bubble functions or by rising the polynomial order of the velocity approximation.
Therefore a special element type definition in the solver input file should be given.

11.3 Keywords

The keywords that are related especially to this solver are described in the following.

Simulation

Coordinate System String
The coordinate system must be set to be one of the following options: Cartesian 2D,
Cartesian 3DorAxi Symmetric.

Solver solver id

Equation String
A name to the equation may be given by using this keyword.

Procedure File "CompressibleNS" "CompressibleNS"
This keyword is used to give the Elmer solver the place where to search for the compressible
Navier—Stokes solver.

Variable String
A name to the solver variable should be given by using this keyword.

Variable DOFs Integer
The value of this keyword should equal to dim + 2 where dim is the coordinate system dimen-
sion. The field variables are organized in such a way that the first dim components correspond
to the velocity solution and the temperature and density fluctuations come after the velocity.

Element String
The user has to specify what strategy is used for enhancing the velocity approximation by giving
the element type definition. If the command Element = ”p:2” is given, then the velocity is
approximated using the shape functions of the second order elements. The element type defini-
tion Element = ”p:1 b:1” can be given to enhance the velocity approximation with one
bubble function.

Material mat id
Equilibrium Density Real
The equilibrium density py should be specified by using this keyword.

Equilibrium Temperature Real
The equilibrium temperature 7j should be specified by using this keyword.

Specific Heat Real
The value of this keyword specifies Cy .
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Specific Heat Ratio Real
The value of this keyword specifies 7.

Heat Conductivity Real
The heat conductivity K should be defined by using this keyword.

Viscosity Real
The viscosity parameter ;. should be defined by using this keyword.

Bulk Viscosity Real
The viscosity parameter ) is taken to be A = k — 2/3p, with  the value of this keyword.

Body Force bc id

Body Force i Real
This keyword defines the i’s component of the body force.
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Electrostatics

Module name: StatElecSolve

Module subroutines: StatElecSolver

Module authors: Leila Puska, Antti Pursula, Peter Raback
Document authors: Peter Raback, Antti Pursula
Document edited: May 27th 2013

12.1 Introduction

The macroscopic electromagnetic theory is governed by Maxwell’s equations. In Elmer it is possible to
solve the electrostatic potential in linear dielectric material and in conducting medium. The dielectric case
is described in this Chapter. For static currents, refer to Chapter 13. Based on the potential, various field
variables as well as physical parameters, such as capacitance, can be calculated.

12.2 Theory

Maxwell’s equations are here written as

vV-D = p (12.1)
V-B = 0 (12.2)
. OB
E = -2 12.
V x o (12.3)
. . 9D
q - 12.4
V x J+ 5 (12.4)

For linear materials the fields and fluxes are simply related, B = uﬁ and D = ¢E, where the permittivity
€ = €o&, 1s defined through the permittivity of vacuum ¢y and the relative permittivity of the material ¢,..
In a stationary case the electric field may be expressed with a help of an electric scalar potential ¢,

E=-V¢. (12.5)
Assuming linear material law and using the equation (12.1) gives
-V -eVop=p. (12.6)

This is the electrostatic equation for non-conducting media.
The energy density of the field is

e =

E-D= %e(w)?. (12.7)
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Thus the total energy of the field may be computed from

1
E = 7/ e(V)2dQ. (12.8)
2 Ja
If there is only one potential difference ® present then the capacitance C' may be computed from
2F
C = = (12.9)

12.2.1 Boundary Conditions

For electric potential either Dirichlet or Neumann boundary condition can be used. The Dirichlet boundary
condition gives the value of the potential on specified boundaries. The Neumann boundary condition is used
to give a flux condition on specified boundaries

— eVl =g. (12.10)

The flux may be defined e.g. by the surface charge density: g = o.
In case there is a object in infinite space it is of course not possible to extent the volume over it. Instead
a spherically symmetric approximation may be used. It results to a flux given by

7
=

g=c¢ (12.11)

T

This may be implemented as an additional term to the matrix so that the linear nature of the problem is
maintained.

Conductors are often covered by thin oxidation layers which may contain static charges. The effect of

these charges can be taken into account by Robin type of boundary condition which combines the fixed

potential value on the conductor and the flux condition due to the static charges

1
g= —%(b + Eph + %(I)() on the boundary, (12.12)

where ¢, and h are the permittivity and the thickness of the oxidation layer respectively, p is the static charge
density of the layer, and @ is the fixed potential on the conductor.

Note that this formulation is valid only for thin layers. For a larger layer a separate body should be added
and a source defined for that.

12.2.2 Capacitance matrix

There is a possibility to compute the capacitance matrix. The algorithm takes use of the original matrix A
before the initial conditions are set. Now the point charges are given by

q = Ag. (12.13)
The induced charges on a body may be computed by summing up the point charges.

If there fre n different bodies the boundary conditions are permutated n times so that body ¢ gets a
potential unity while others are set to zero potential,

Cij = Zq. (12.14)
Ly

The symmetry of the matrix is ensured afterwards by setting

C= %(O+CT). (12.15)
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12.3 Notes on output control

The user can control which derived quantities (from the list of electric field, electric flux, electric energy,
surface charge density and capacitance matrix) are calculated.

There are also available two choises of visualization types for the derived quantities. The node values
can be calculated by taking the average of the derived values on neighbouring elements (constant weights).
This results often in visually good images. The other possible choice is to weight the average with the size of
the elements, which is more accurate and should be used when some other variable depends on these derived
values. The latter choice is also the default.

124 Keywords

Constants
Permittivity Of Vacuum Real [8.8542e-12]
Solver solver id

Equation String Stat Elec Solver

Variable String Potential
This may be of any name as far as it is used consistently also elsewhere.

Variable DOFs Integer 1
Degrees of freedom for the potential.

Procedure File "StatElecSolve" "StatElecSolver"

Following are listed four keywords with default values for output control.

Calculate Electric Field Logical [True]
Calculate Electric Flux Logical [True]
Calculate Electric Energy Logical [False]
Calculate Surface Charge Logical [False]
Calculate Capacitance Matrix Logical [False]

Capacitance Bodies Integer
In case of a capacitance matrix computation the number of bodies at different potential must be
given (not accounting the ground).

Capacitance Matrix Filename String
The name of the file where capacitance matrix is being saved. The default is cmatrix.dat.

Constant Weights Logical [True]
Used to turn constant weighting on for the results.

Potential Difference Real
Used to give the potential difference for which the capacitance is calculated, when capcitance
matrix calculation is not performed. This keyword gives thus the voltage between the electrodes
of a simple capacitor. The voltage has to be consistent with the potentials defined in boundary
conditions.

Material mat id
Relative Permittivity Real
Body Force bodyforce id

Charge Density Real
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Boundary Condition bc id

Potential Real
If the name of the primary variable is potential then this sets the Dirichlet boundary condition.

Electric Flux Real
Neumann boundary condition for g.

Surface Charge Density Real
Another way to define flux condition. Identical to the previous keyword.

Electric Infinity BC Logical
The spherical approximation for the open boundaries extending to infinity.

The following five keywords are used if a thin oxidation layer is modeled. Note that these are only
active if the Electric Flux BC keyword is set to True.

Layer Thickness Real
Defines the thickness of the oxidation layer. This is presumed to extend on the outside the
boundary.

Layer Relative Permittivity Real
The relative permittivity of the oxidation layer.

Layer Charge Density Real
The volume charge density in the oxidation layer.

Electrode Potential Real
The potential on the conductor behind the oxidation layer.

Nominal Potential Difference Real
The potential difference of the system.

Capacitance Body Integer i
These should number from i=1 up to Capacitance Bodies. The ground may be given
directly with zero potential or with value O for this keyword. This definition is only needed in
the computation of the capacitance matrix where the potential is permutated in a very specific
way.

CSC —IT Center for Science (cc



Model 13

Static Current Conduction

Module name: StatCurrentSolve

Module subroutines: StatCurrentSolver

Module authors: Leila Puska, Antti Pursula, Peter Raback
Document authors: Antti Pursula

Document edited: May 27th 2013

13.1 Introduction

The macroscopic electromagnetic theory is governed by the Maxwell’s equations. This module solves the
electrostatic potential in conducting medium allowing volume currents and electric power loss (Joule heat-
ing) to be derived.

13.2 Theory

In the electroquasistatic approximation Maxwell’s equations are written as

V-D = p 13.1)
VxE =~ 0 (13.2)
q - 0D
H = = 13.
V x T+ (13.3)

so that the electric field may be expressed in terms of an electric scalar potential ¢ as
E=-V¢. (13.4)

In addition, the continuity equation for electric charges is easily obtained from (13.1) and (13.3):

o TV =0 (13.5)

The Ohm’s law for conducting material gives the relationship between current density and electric field,
J=0cE (13.6)

where o is the electric conductivity. Starting from the continuity equation (13.5) and using the equa-

tions (13.6) and (13.4) we get
Ip
V- -oVp = =2, 13.7
oV N 13.7)
This Poisson equation is used to solve the electric potential. The source term is often zero but in some cases
it might be necessary.
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The volume current density is now calculated by
J=—0Vo, (13.8)
and electric power loss density which is turned into heat by
h=V¢-oVe. (13.9)
The latter is often called the Joule heating. The total heating power is found by integrating the above equation
over the conducting volume.

13.2.1 Boundary Conditions

For electric potential either Dirichlet or Neumann boundary condition can be used. The Dirichlet boundary
condition gives the value of the potential on specified boundaries. The Neumann boundary condition is used
to give a current J; on specified boundaries

Jy = oV - (13.10)

13.2.2 Power and current control

Sometimes the desired power or current of the system is known a priori. The control may be applied to the
system. When the electric potential has been computed the heating power may be estimated from

P:/v¢-av¢d9. (13.11)
Q

If there is a potential difference U in the system the effective resistance may also be computed from R =
U?/ P and the effective current from [ = P/U.
The control is achieved by multiplying the potential and all derived fields by a suitable variable. For

power control the coefficient is
Cp=+/Py/P, (13.12)

where P, is the desired power. For current control the coefficient is
Cr=Iy/I, (13.13)

where I is the desired total current.

13.3 Note on output control

The user can control which derived quantities (i.e. volume current and Joule heating) are calculated and
additionally specify if he/she wants to output also the electric conductivity. The latter is useful when the
conductivity depends for example on temperature. This feature is available only for isotropic (scalar) con-
ductivities.

There are also available two choises of visualization types for the derived quantities. The node values
can be calculated by taking the average of the derived values on neighbouring elements (constant weights).
This results often in visually good images. The other possible choice is to weight the average with the size of
the elements, which is more accurate and should be used when some other variable depends on these derived
values. The latter choice is also the default.

13.4 Keywords

Solver solver id

Equation String Stat Current Solver
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Variable String Potential
This may be of any name as far as it is used consistently also elsewhere.

Variable DOFs Integer 1
Degrees of freedom for the potential.

Procedure File "StatCurrentSolve" "StatCurrentSolver"

Following are listed two keywords with default values for output control.

Calculate Volume Current Logical [True]
Calculate Joule Heating Logical [True]

Constant Weights Logical [True]
Used to turn constant weighting on for the results.

Power Control Real
Apply power control with the desired heating power being Fy.

Current Control Real
Apply current control with the desired current being .
Material mat id
Electric Conductivity Real
Body Force bodyforce id
Current Source Real
Possibility for a current source, not used often though.

Joule Heat Logical
If this flag is active the Heat equation will automatically compute the quantity V¢ - 0V ¢ as heat
source. Then it is assumed that ¢ is named Potential. If there is no heat equation this flag
has no effect.

Boundary Condition bc id
Potential Real
Dirichlet BC for the potential.

Current Density BC Logical
Must be set to True if Neumann BC is used.

Current Density Real
Neumann boundary condition for the current.
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Computation of Magnetic Fields with
Whitney Elements

Module name: MagnetoDynamics

Module subroutines: WhitneyAV Solver, Whitney AVHarmonicSolver,MagnetoDynamicsCalcFields
Module authors: Juha Ruokolainen

Module status: Alpha

Document authors: Mika Malinen, Juha Ruokolainen, Peter Raback

Document created: Sep 9, 2010

Document edited: Nov 11, 2013

14.1 Introduction

This module may be used to solve a version of the Maxwell equations in the A-V form. The approximation
of the associated vector potential variable Ais here done by using the lowest-order edge element discretiza-
tion, while the classic Lagrange interpolation is applied to compute the scalar potential V. In addition to
performing the computations in the time domain, the analogous version of the equations may also be solved
in the frequency domain. Furthermore, an additional solver may be called to produce nodal approximations
of derived fields after the two potentials have been obtained.

14.2 Theory

Consider solving the following version of electromagnetics equations on a body €:

705+VX(EE) = g, (14.1)
7
V-B = 0, withB=Vx 4, (14.2)
, OB
VxE = —=—— 143
x o (14.3)

where o is the electrical conductivity, p is the permeability and g is a source term. It should be noted that
this set of equations does not have a unique solution without imposing additional constraints on A(x,t).
Otherwise, if A satisfies the equations, any field ff¢ having the decomposition ff(b = A+ V¢ also solves
the same system of equations. The uniqueness of A could be assured for example by seeking E(~7 t) €
H(curl, Q) N H(div, ) that satisfies additionally

V-A=0onQand A =0 onthe boundary 0. (14.4)
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In view of (14.2), we may rewrite (14.3) as

L 9A. .
vX(E+§)_o

to see that we may automate the satisfaction of (14.3) by seeking the solution in the form

L 9A
E+—=— 14.5
+ > vV, (14.5)

with V (-, ¢) € V C H'(Q2) an unknown scalar potential. This offers the possibility of eliminating the elecric
field E from the set of primary unknowns if an additional constraint based on the requirement

V- (§+0E)=0 (14.6)

is simultaneously imposed to serve the determination of V.
To derive a computational version of the equations, let v be an appropriate test function for V, so that we
have Vv € Lo (). Multiplying (14.5) with a quantity c Vv and integrating over {2 then gives

/a%'Vde+/0VV«Vde:f/orE_"Vde. (14.7)
Q Q Q

Applying integration by parts to the left-hand side and imposing the constraint (14.6) bring us to the weak
formulation

A _ _
/U%-VudQ—F/UVV-VUdQZ/V-(oE)de—/(o*E)-ﬁvdS
Q

@ (14.8)

Q (o9}
= —/V~§de—/(aE)-ﬁvdS.
Q o0

The determination of the scalar potential V' is thus joined with the possibility of specifying either V' or the
normal component of the electric current density oF on the boundary. If the normal component of the
electric current density is specified on the entire boundary 052 as —(UE) - Tl = jn, the source and boundary
data must satisfy the compatibility condition

/V-ng:/jndS.
Q o0

The current implementation of the evolutionary equations assumes that the source ¢ is divergence-free, so
that V - § = 0. For ways to ensure this condition beforehand, see the description of the Helmholtz projection
in the context of stationary equations below.

On the other hand, by using (14.2) and (14.5), we may rewrite (14.1) as

oA 1 .
0o HOVV +V (;VXA) =g (14.9)

to obtain the weak version

A 1 ﬂ
/J%.ﬁdg+/aVV~ﬁdQ+/f(VxA)-(Vxﬁ)dQ
Q Q . Q ! (14.10)
—/[ﬁx(—VxE)xﬁ]-(ﬁxﬁ)dS:/g*~ﬁdQ,
a0 s Q

with 77 an appropriate test function corresponding to A. The weak formulations obtained from (14.10) and
(14.8) generally form the basis for the A-V formulation of the problem.
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It should be noted that by starting from (14.7) we have avoided seeking the solution
A(-,t) € H(curl, Q) N H(div, Q)

as only the requirement A(-,) € H(curl,Q) appears to be necessary in this derivation. The Elmer im-
plementation relies on this minimal regularity assumption so that a finite element approximation /fh(-, t)
is sought from an edge finite element space X;, C H(curl, ). This simplification however leads to the
inconvenience that the uniqueness of the vector potential solution cannot be ensured.

The stationary equations and the Helmholtz projection of a source. In the stationary case the electric
field E is simply the gradient of a scalar potential. The weak formulation based on (14.10) and (14.8) then
simplifies to

1 > 1 .
/aVV-ﬁdQJr/;(V><A)~(V><ﬁ)de/[ﬁ><(;VxA)xﬁ]'(ﬁxﬁ)dS:/g*~ﬁdQ
Q Q o0 Q

(14.11)

and
/avv.vde: 7/V~gvdﬂf/(aE_') v dS. (14.12)
Q Q o

As the solution of V and A can then be done sequentially by first solving for V', the basic scenario for apply-
ing the solver to stationary cases is that only the field A is then solved by employing the weak formulation

1 T » e R B -
Q o0 Q

where gg denotes the static source.

It should be noted that when (14.13) is taken as a starting point, the source term gs should generally be
divergence-free, i.e. the source should satisfy V - gg = 0. The divergence-freeness of gs may be assured
by setting Js = P(J*) where J* is the user-supplied source term and the Helmholtz projection P(.J*) =
Js — VQ,with@Q € M C Hl(Q), is defined via the requirement

/v A(J* = VQ)qdt=0 (14.14)
Q

for any admissible variation ¢ of Q. If J* has already been obtained from a scalar field V'® as
J* = —oVV?®, (14.15)

to obtain a close resemblance of J* and P(J_:g) (especially, P(f"’) = J* when J* is already divergence-free)
the field @ should satisfy the homogeneous Dirichlet constraint on precisely the same boundary where the
Dirichlet constraint was specified for 1. On the remaining part of the boundary it is then natural to set

P(J?) it = J° - ii. (14.16)

Other types of source vectors may also be considered as the user may generally specify the vector gg = g in
the form
g=P(J)+V xM*—0oVV?® 14.17)

or, if the Helmholtz projection is not applied,
G=J"+V x M* —aVV®. (14.18)

Here M is referred to as the magnetization. The last terms in (14.17) and (14.18) enable the direct gener-
ation of the source electric current density in terms of the source potential V' * without first computing J*
from (14.15).
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The Helmholtz projection of the source may also be performed when the evolutionary version of the
equations is handled. If we make the specific choices of VV and M so that @) satisfy the homogeneous
Dirichlet constraint on boundaries where V' is constrained, the left-hand side in (14.8), with § = P(fs), is
then written by using (14.14) and integration by parts as

/V gudQ — /O’E -nvdS = / - Vo dQ) — / n———ﬁ—(JE) i) vdS

/ -nudS.

o0
(14.19)

To conclude, we note that it is also possible to solve the stationary equations such that both AandV are
handled as unknowns and solved simultaneously by employing the variational equations

/JVV-ﬁdQ—i—/ (V x A) - (V x i) dQ — /nx (=V x A) x ii] - (it x ) dS = /P
Q Q
(14.20)

and
/avv VodQ = — /(JE) -fivdS. (14.21)
Q on

It should be noted that this formulation is based on assuming that (14.19) is satisfied. Hence the potential
(@ should again satisfy the homogeneous Dirichlet constraint on the boundary where V is constrained by a
Dirichlet condition.

The boundary conditions. We see from the weak versions (14.10) and (14.8) that, if the Dirichlet type
constraints B

nxAxn=a, and V =190 (14.22)
are not given, we may specify the tangential components of the magnetic field H= (1/ u)é and the normal
component of electric current density J = o £ via giving

!
3

1 .
- A) x i =
(qu ) X 7t

(14.23)

and .
—(oFE) -1 = jp. (14.24)

We note that giving a Dirichlet constraint is a useful way to guarantee the uniqueness of the scalar potential
V' which would otherwise be determined only up to a constant.
A Robin-like generalization of (14.23) leads to the boundary condition

. 1 . "

oz(ﬁxAxﬁ)—i—(;VxA) x it = ho, (14.25)

with « a given parameter. We however note that the case o # 0 may lack in having a physical interpretation.
On the other hand, a generalized version of (14.24) is written as

—(0E) it = j, — B, (14.26)
which in the stationary case reduces to the Robin boundary condition
oVV - i+ BV = j,. (14.27)

In addition, a procedural technique may be applied to specify a Dirichlet constraint for A when the normal
component of the magnetic flux density B is given on the boundary.
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Solution in the frequency domain. The equations in the A-V form may also be solved in the frequency
domain. In this case the ansatz A(x,t) = A(z)exp(iwt) and V(z,t) = V(x) exp(iwt) is made to obtain
the analogous set of equations for determining the complex-valued amplitudes A(z) and V().

14.3 Keywords
Keywords for WhitneyAVSolver

Here we list the keywords that are relevant to solving the evolutionary and stationary versions of the equa-
tions by calling the solver subroutine WhitneyAVSolver and that may also be common to the other
solvers. Such common keywords relate to specifying material parameters, body forces, and boundary con-
ditions.

Constants

Permeability of Vacuum Real
This constant has the default value 47 - 10~7.

Material mat id

The following material parameters may be used by all the solvers in the module.

Electric Conductivity Real
This keyword is used to specify the electric conductivity o. If the material is anisotropic, the
electric conductivity may also be defined to be a tensor function by giving its components with
respect to the global coordinate lines.

Relative Permeability Real
If this keyword is used, the permeability p can be specified in terms of the permeability of
vacuum. To obtain the permeability, the value of this keyword is then internally multiplied with
the permeability of vacuum. Instead of using this keyword, the keywords Permeability or
Reluctivity may be used.

Permeability Real
This keyword may be used to specify directly the permeability .

Reluctivity Real
The value of this keyword specifies the reluctivity v. The permeability is then taken to be p =
1/v.

Solver solver id

Equation String WhitneySolver
A describing name for the discrete model handled by this solver may be given by using this
keyword. The name can be changed as long as it is used consistently.

Procedure File "MagnetoDynamics" "WhitneyAVSolver"
This declaration specifies the name of the solver subroutine.

Variable String Potential
The name of the variable may be freely chosen provided it is used consistently also elsewhere.
The associated number of degrees of freedom should always be one.

Element
The default initialization routine should give a suitable element type definition automatically, so
that the value of this keyword need not necessarily be given by the user.

Fix Input Current Density Logical
To ensure the divergence-freeness of the source term via performing the projection (14.14), the
value True should be given for this keyword.
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Automated Source Projection BCs Logical
If the projection (14.14) is applied to the user-specified source J*, the solver has originally
constrained the field ) automatically such that () is chosen to satisfy the zero Dirichlet condition
on parts where |J® - 7i| # 0. This may however give P(J°) # J° even when J* is already
divergence-free. It is therefore advisable to disable this feature by giving the value False for
this keyword and generally specify the homogeneous Dirichlet constraint for () (known as the
field Jfix) on boundaries where V' or V¢ is constrained by a Dirichlet constraint.

Use Tree Gauge Logical
Due to the chosen discretization, the vector potential is not sufficiently constrained to guarantee
the uniqueness. Despite this, the iterative solvers are expected to be able to generate a consistent
solution among many. However, to enable the solution with direct solvers this keyword is by
default given the value True so that a special technique is applied to additionally constrain the
discrete vector potential variable (in the case of iterative solvers the default value is False).

Linear System Refactorize Logical
It is noted that if the refactorization of the system matrix is controlled with this keyword, the
matrix factorization is anyhow recomputed automatically if the time step size differs from the
previous one.

Linear System Preconditioning String
Here the value None may give better performance than the standard ILU preconditioners since
the null space of the system matrix may be non-trivial, leading to a singularity problem in con-
nection with handling the LU decomposition.

Linear System Iterative Method String
The iterative solvers BiCGStab or BiCGStab(L) may work well.
Body Force bf id
In the body force section the user may give various volume sources contained in the vector g as defined
in either (14.17) or (14.18).

Current Density i Real
This keyword is used to specify the components of the electric current density J; where, ¢ =
1,2,3.

Magnetization i Real
This keyword is used to specify the components of the magnetization M7, with7 =1, 2, 3.

Electric Potential Real
This keyword specifies the source electric potential V*.

Boundary Condition bc id

As explained, two versions of Dirichlet conditions are possible in connection with the A-V formula-
tion. The first option relates to giving the value of the scalar potential, while the other version is used
for prescribing the tangential component of the vector potential field. The edge element approximation
of a field A(z) is generally written as

m
Ap(z) = Zai¢i(m)>
i=1
where the degrees of freedom «; are chosen to be the integrals of tangential components over element
edges E;:
a; = /A’h -Tds.
E;

The user may specify the coefficients «; on a boundary via

;= /(&’~ T+a,)ds (14.28)
E;

CSC —IT Center for Science (cc



14. Computation of Magnetic Fields with Whitney Elements 88

where the scalar G, and the components of @ with respect to the global Cartesian coordinate axes can
be given. Assuming that the solver variable is Potential, we may thus use the following keywords
to specify the Dirichlet conditions:

Potential Real
This keyword is used to specify the Dirichlet condition for the scalar potential V', which is
approximated by using the standard Lagrange interpolation.

Potential {e} Real
The value of this keyword gives the scalar a. in (14.28) in order to specify the degrees of freedom
corresponding to the edge element interpolation of the vector potential.

Potential {e} j Real
This keyword is used to the give the vector @ in (14.28) in order to prescribe the degrees of
freedom corresponding to the edge element interpolation of the vector potential. The value
of this keyword defines the component a;, j € {1,2,3}, with respect to the global Cartesian
coordinate system.

Jfix Real
This keyword is used to specify the Dirichlet condition for the scalar potential field (7, which is
defined via (14.14).

The following keywords may be used in order to handle the flux-related boundary conditions:

Magnetic Field Strength i Real .
This keyword can be used to define the components h; of a vector / so that the boundary condi-
tions (14.23) and (14.25) may be imposed with the tangential vector h, = h — (h - 7i)7i.

Electric Current Density Real
This keyword can be used to define the electric current density j,, in the boundary conditions
(14.24) and (14.26).

Current Density Real
If the Helmholtz projection of the source is applied, this keyword may be used to specify the
left-hand side in (14.16) as J* - 7 = —j,,, with j, the value of this keyword.

Magnetic Transfer Coefficient Real
The value of this keyword gives the parameter « in the boundary condition (14.25).

Electric Transfer Coefficient Real
The value of this keyword gives the parameter 3 in the boundary condition (14.26).

Finally, the following keywords relate to a procedural technique to determine a tangential constraint
for the vector potential A when the normal component of the magnetic flux density B is specified on
the boundary.

Magnetic Flux Density i Real
This keyword is used to specify the components of the magnetic flux density B with respect to
the global Cartesian coordinate axes.

Magnetic Flux Density {n} Real
This keyword may be used to specify directly the normal component B,, of the magnetic flux
density.

Keywords for WhitneyAVHarmonicSolver

In the following the additional keywords related to solving the harmonic version are listed. Typically these
are used for giving optional values which specify the imaginary parts of the parameter values. The corre-
sponding real parts are then given by using the keyword commands already described above.

Solver solver id
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Equation String WhitneyHarmonicSolver
This gives a describing name for the discrete model handled here. The name can be changed as
long as it is used consistently.

Procedure File "MagnetoDynamics" "WhitneyAVHarmonicSolver"
The name of the solver subroutine is declared.

Variable String P[Pot re:1 Pot im:1]
The name of the variable may be freely chosen provided it is used consistently also elsewhere.
The associated number of degrees of freedom is always two. Here the real and imaginary parts
are named so that they are easily recognized.

Angular Frequency Real
The angular frequency w = 27 f in the harmonic ansatz is specified.

Material mat id

Reluctivity Im Real
The reluctivity v = 1/u may be specified to be a complex-valued quantity with the imaginary
part given by using this keyword.

Electric Conductivity Im Real
The value of this keyword may be used to specify the imaginary part of the conductivity param-
eter. If the material is anisotropic, the electric conductivity may also be defined to be a tensor
function by giving its components with respect to the global coordinate lines.

Body Force bf id

The following keywords are used to specify the imaginary parts of the volume sources:

Current Density Im i Real

Magnetization Im i Real

Boundary Condition bc id

The following keywords relate to specifying imaginary parts in conjunction with defining boundary
conditions:

Magnetic Field Strength Im i Real
Electric Current Density Im Real
Magnetic Transfer Coefficient Im Real
Electric Transfer Coefficient Im Real
Magnetic Flux Density Im i Real

Magnetic Flux Density Im {n} Real

Keywords for MagnetoDynamicsCalcFields

An additional solver may finally be called to compute derived fields.
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Solver solver id

The fields to be computed are chosen in the solver section. The field Magnetic Flux Density
is computed always, others if requested. The size of a vector field is 3, while a tensor field has the size
6. For the harmonic solution the sizes are doubled as the imaginary components are also present.

Equation String CalcFields
A describing name for the solver is given. This can be changed as long as it is used consistently.

Procedure File "MagnetoDynamics" "MagnetoDynamicsCalcFields"
The name of the solver subroutine is given.

Potential Variable String
This keyword is used to specify the name of the underlying potential variable, for example
Potential.

Angular Frequency Real
The angular frequency must be declared in this connection also.

Calculate Magnetic Field Strength TLogical
If True is given, a vector field Magnetic Field Strength is computed.

Calculate Electric Field Logical
If True is given, a vector field Electric Field is computed.

Calculate Current Density Logical
If True is given, a vector field Current Density is computed.

Calculate Maxwell Stress Logical
If True is given, a tensor field Maxwell Stress is computed.

Calculate Joule Heating Logical
If True is given, a scalar field Joule Field is computed.

In addition to the field computation, two scalar quantities are always computed by the solver and saved in
the list of the Simulat ion section values: Eddy current power andMagnetic Field Energy.
The first one is only relevant for time-dependent and harmonic cases.
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Computation of Magnetic Fields in 2D

Module name: MagnetoDynamics2D

Module subroutines: MagnetoDynamics2D,MagnetoDynamics2DHarmonic,BSolver
Module authors: Juha Ruokolainen, Mika Malinen, Peter Raback

Module status: Alpha

Document authors: Peter Raback, Mika Malinen

Document created: 21.1.2013

Document edited: 30.5.2013

15.1 Introduction

This module may be used to solve a version of the Maxwell equations in the 2D (and cylindrically symmet-
ric) special cases when the approximation may be associated to the z-component (or ¢-component) of the
vector potential. In contrast to the 3D version of the magnetodynamics solver of the previous chapter here
standard Lagrange interpolation is applied. In addition to performing the computations in the time domain,
the analogous version of the equations may also be solved in the frequency domain. Furthermore, an addi-
tional solver may be called to produce the magnetic field intensity from the computed vector potential. Also
Joule losses may computed for harmonic fields.

15.2 Theory

When the current density acts in a direction orthogonal to the plane considered, the effect of the scalar
potential vanishes in the A-V formulation of Maxwell’s equations. The system is then fully described by the
vector potential A as

0A,
ot

g

otV x (AV x A8) = S8 + (V x B) - €. (15.1)
"

where A, is the out-of-plane component of the vector potential, .J, the corresponding current density and M
is the magnetization vector.

The harmonic version of the equation is obtained by replacing the operator % with ¢w. For the harmonic
case the Joule heat generation in the conductors may be computed from

1
h = 50w2|Az\2.

As the electric conductivity o is discontinuous over material boundaries it is attractive to compute a field
without it so that the multiplication is carried out within the heat solver where the source term is needed.
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15.2.1 Boundary Conditions

For the equation one can apply either Dirichlet or homogeneous natural boundary conditions. The Dirichlet
boundary condition for A, is simply

A, =AY (15.2)
Alternatively flux conditions may be used,
10A,
104, _ (153)
un on

It may be difficult to extend the Dirichlet conditions far enough. Then a spherically symmetric far-field
approximation may be used resulting to a Robin kind of boundary condition for the flux.
1 70

g:*Az

= 15.4
0y (15.4)

If no boundary conditions are specified the natural boundary condition with g = 0 prevails.

15.3 Keywords

Keywords for MagnetoDynamics2D

Here we list the keywords that are relevant to solving the evolutionary and stationary versions of the equa-
tions by calling the solver subroutine MagnetoDynamics2D and that may also be common to the other
solvers. Such common keywords relate to specifying material parameters, body forces, and boundary con-
ditions.

Constants

Permeability of Vacuum Real
This constant has the default value 47 - 107 in SI units. In different unit system change this
accordingly.

Material mat id

The following material parameters may be used by all the solvers in the module.

Electric Conductivity Real
This keyword is used to specify the electric conductivity o.

Relative Permeability Real
If this keyword is used, the permeability © can be specified in terms of the permeability of
vacuum. To obtain the permeability, the value of this keyword is then internally multiplied with
the permeability of vacuum. Instead of using this keyword, the keywords Permeability or
Reluctivity may be used.

Permeability Real
This keyword may be used to specify directly the permeability p.

Reluctivity Real
The value of this keyword specifies the reluctivity v. The permeability is then taken to be p =
1/v.

Magnetization i Real
The components of the magnetization vector, ¢ = 1, 2.

B-H Curve Cubic Real
The B — H curve must be given as a cubic spline. This enables that the derivative of the curve
is computed analytically from the spline coefficients.

Solver solver id
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Equation String MgDynZ2D
A describing name for the discrete model handled by this solver may be given by using this
keyword. The name can be changed as long as it is used consistently.

Procedure File "MagnetoDynamics2D" "MagnetoDynamics2D"
This declaration specifies the name of the solver subroutine.

Variable String Az
The name of the variable may be freely chosen provided it is used consistently also elsewhere.
The associated number of degrees of freedom should always be one.

Nonlinear System Max Iterations Integer
If the material laws are nonlinear the equation may need some iterations before reaching the
solution. This keywords gives the maximum number of iterations. The default is one. If a
nonlinear H — B curve is given then Newton’s linearization is applied after the 1st iteration.

Nonlinear System Convergence Tolerance Real
This keyword gives the convergence tolerance for the nonlinear iteration.
Body Force bf id

In the body force section the user may give various volume sources.

Current Density Real
This keyword is used to specify the current density in the z-direction.

Boundary Condition bc id
Az Real
This keyword is used to specify the Dirichlet condition for the vector potential.

Infinity BC Logical
Sets far-field conditions for the vector potential assuming spherical symmetry at distance.

Mortar BC Integer
This enforces continuity in the case of rotating boundary conditions by the mortar finite element
method. Note that this feature is still under development.

Keywords for MagnetodDynamics2DHarmonic

Here only the additional keywords related to the harmonic solver are listed. For other keywords see the
definitions above.

Material mat id
Electric Conductivity im Real
Imaginary part of the electric conductivity.
Magnetization i Im Real
Imaginary components of the Magnetization vector, 7 = 1, 2.
Solver solver id
Equation String MgDyn2DHarmonic
A name for the solver.

Procedure File "MagnetoDynamics2D" "MagnetoDynamics2DHarmonic"
This declaration specifies the name of the solver subroutine.

Variable String Potential [Potential Re:1 Potential Im:1]
The name of the variable may be freely chosen provided it is used consistently also elsewhere.
The associated number of degrees of freedom should always be two.
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Body Force bf id

In the body force section the user may give various volume sources.

Current Density Im Real
This keyword is used to specify the imaginary part of the current density.

Keywords for Bsolver

An additional solver may finally be called to compute derived fields.

Solver solver id

The postprocessing solver currently only solves for the magnetic field density. The size of the re-
quested vector field is 2 when the target variable is real-valued and 4 if it is complex-valued. The user
does not need to specify the output fields.

Equation String BSolver
A describing name for the solver is given. This can be changed as long as it is used consistently.

Procedure File "MagnetoDynamics2D" "BSolver"
The name of the solver subroutine is given.

Target Variable String
This keyword is used to specify the name of the underlying potential variable, the default is Az.

Discontinuous Galerkin Logical
The derived fields are discontinuous if the material properties has jumps. Therefore the visual-
izations are more appealing if the fields may be allowed to be discontinuous. Setting this flag
True activates discontinuous Galerkin (DG) computation of the fields. Note that these fields are
compatible only with certain postprocessing practices. One possible way is to use vtu output
and ask elemental fields for saving, such as Vector Field Elemental 1.

Average Within Materials Logical
If DG formulation for the fields is asked, this enforces averaging of the fields within materials.

Calculate Joule Heating Logical [True]
In large computations the automatic computation of the Joule heating may be turned off by this
keyword. The default is False. The keyword is only applicable for the harmonic case. The
computation results to two additional variables. Joule Heating gives the absolute heating
and Joule Field the field that gives the heating when multiplied by the electric conductivity.
This may be needed if the electric conductivity is discontinuous making also the heating power
discontinuous.

Desired Heating Power Real
A constant that gives the desired total heating power in Watts. If the keyword is active, then the
Joule Heatingand Joule Field are multiplied by the ratio of the desired and computed
heating powers.
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16.1 Introduction

Note: This solver is obsolite!

Maxwell’s equations may generally be expressed by employing a scalar potential and a vector potential.
The magnetic flux density is then the curl of the vector potential. In some cases the effect of the scalar
potential vanishes and the system is fully described by the vector potential. These cases include magne-
tostatics problems where time-independent magnetic fields may be created by electromagnets with given
current distributions or permanent ferromagnets. The solver considered here allows the first option, with
non-homogeneous and non-linear magnetic materials.

The scalar potential may also be ignored in two-dimensional magnetoquasistatic cases when the current
density acts in a direction orthogonal to the plane considered. Then eddy current effects relating to a sinu-
soidal evolution of the current density may also be considered at low frequencies. If there are no conductors
in the system, this approximation reduces to the equations of magnetostatics.

This solver was historically developed for the axially symmetric cases and it should only be used in
those. For handling problems in orthogonal Cartesian coordinates, see the modules MagnetoDynamics
and MagnetoDynamics2D for 3-D and 2-D versions, respectively.

16.2 Theory

When there are no hard ferromagnets, a magnetostatics problem may be expressed using the magnetic vector
potential A that gives the magnetic flux density as B = V x A. It s obtained directly using the Ampere’s
law, so that

V x (iv % A’) =7 (16.1)

Here 1 is the magnetic permeability of the material. The equation may be non-linear through the magnetic
permeability curve of a ferromagnetic material. The solver discussed is intended for handling the axially
symmetric version of (16.1).
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The axially symmetric version of (16.1) may also employed to handle magnetoquasistatic problems
where the effect of the displacement current is ignored. If there are conductors in the system, the current
density is then written as 7= o F + j3 where o is the electric conductivity and the electric field E is given
by

In the time-harmonic case the source current density 7y is considered to be jo(x,t) = Jp(x)e’?, where
w = 27 f is the angular frequency. Using a trial A(x,t) = Ag(z)e™?, we then obtain an equation for the
amplitude:

1 - —
V x (V X A()) + iwaAo = j().
7

In the axially symmetric case, the magnetic flux density B has only r- and z-components, while the
current density 7'and the vector potential A have only ¢-components, so that the equation to be solved is

1
V x (uv X A¢€¢) + inA¢€¢ = j¢€¢. (16.2)

The vector potential satisfies now automatically the Coulomb gauge. After the solution the heat generation
in the conductors may be computed from

1 N
h = §Uw2|AO|2.

In contrast to the stationary case where A is real and the equation has only one unknown, in the har-
monic case the equation has two unknowns — the in-phase and the out-of-phase component of the vector po-
tential. The magnetic flux density may generally be calculated from the vector potential as a post-processing
step. Both the vector potential and the magnetic flux density components are then provided. The vari-
able names in the result file are magnetic vector potential and magnetic flux density
i, with i=1 and i=2.

16.2.1 Boundary Conditions

For the magnetostatics equation one can apply either Dirichlet or homogeneous natural boundary conditions.
In both cases, one must check that the computational domain is extended far enough to avoid numerical
errors.

The Dirichlet boundary condition for A is

Ay = AL, (16.3)

In practice, when the Dirichlet condition is used, one usually takes AZ, = 0. If a Dirichlet condition is not
specified, the homogeneous natural boundary condition is used.

16.3 Keywords

Simulation

Frequency Real
Frequency f if harmonic simulation is used.

Angular Frequency Real
Angular frequency w = 27 f if harmonic simulation is used, alternative to the previous one.

Constants

Permeability of Vacuum Real [4710 [
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Solver solver id
Note that all the keywords related to linear solver (starting with Linear System) may be used in
this solver as well. They are defined elsewhere.

Equation String [Static Magnetic Field]
The name of the equation.

Variable String [Aphi]
The name of the variable.

Variable Dofs Integer
Number of dofs in the field, this should be one for the steady-state case and two for time-
harmonic analysis.

Procedure File ["StatMagSolve" "StatMagSolver"]
The name of the file and subroutine.

Harmonic Simulation Logical
Assume time-harmonic simulation.

Calculate Magnetic Flux Logical [True]
By this flag the computation of the magnetic flux is activated. The defaultis False.

Calculate Magnetic Flux Abs Logical [True]
Sometimes it is useful to have the absolute magnetic flux available for nonlinear material laws.
Then this flag can be turned on. The default is False.

Calculate Joule Heating Logical [True]
In large computations the automatic computation of the Joule heating may be turned off by this
keyword. The default is False. The keyword is only applicable for the harmonic case. The
computation results to two additional variables. Joule Heating gives the absolute heating
and Joule Field the field that gives the heating when multiplied by the electric conductivity.
This may be needed if the electric conductivity is discontinuous making also the heating power
discontinuous.

Desired Heating Power Real
A constant that gives the desired total heating power in Watts. If the keyword is active, then the
Joule Heatingand Joule Field are multiplied by the ratio of the desired and computed
heating powers.

Nonlinear System Convergence Tolerance Real
This keyword gives a criterion to terminate the nonlinear iteration after the relative change of the
norm of the field variable between two consecutive iterations k is small enough

k—
14§ — A~ Il < ellAgIl,

where € is the value given with this keyword.

Nonlinear System Max Iterations Integer
The maximum number of nonlinear iterations the solver is allowed to do. If neither the material
parameters nor the boundary conditions are functions of the solution, the problem is linear and
this should be set to be 1.

Nonlinear System Relaxation Factor Real
Giving this keyword triggers the use of relaxation in the nonlinear equation solver. Using a
factor below unity is sometimes required to achieve convergence of the nonlinear system. A
factor above unity might speed up the convergence. Relaxed variable is defined as follows:

"\ Ak k—1
Ay =25+ (1 - NAS,
where ) is the factor given with this keyword. The default value for the relaxation factor is unity.

Equation eg id
The equation section is used to define a set of equations for a body or set of bodies:
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Static Magnetic Field Logical
If set to True, solve the magnetostatics equation.

Body Force bf id
The body force section may be used to give additional force terms for the equations.

Current Density Real
Specifies the azimuthal component of the current density. It may be a positive or negative con-
stant, or a function of a given variable.

Current Phase Angle Real
Specifies the phase angle of the current density in degrees. The default phase angle is zero.
Applies only to the time-harmonic case.

Joule Heat Logical
If this flag is active, the heat equation will automatically include the computed Joule heating as
a heat source. Then it is assumed that Joule heating field ¢ is named Joule field. If there is
no heat equation, this flag has no effect.

Initial Condition ic id
The initial condition section may be used to set initial values for the field variables. The following
variable is active:

Aphi Real
The azimuthal component of the magnetic vector potential.

Material mat id
The material section is used to give the material parameter values. Material parameter available for
the magnetostatics equation are.

Relative Permeability Real
The relative magnetic permeability p is set with this keyword, defining the material relation B=
Lo ,uoﬁ . By default the relative magnetic permeability is one, but it may also be set otherwise or
be a function of a given variable, typically given by the relation p, = ,ur(|§ |). The value of the
magnetic flux density \E | is available by the variable named Absolute Magnetic Flux.

Electric Conductivity Real
The electric conductivity defines the relation 7 = oF. Only isotropic case is possible. The
parameter is needed only in the time-harmonic case.

Boundary Condition bc id
The boundary condition section holds the parameter values for various boundary condition types. A
Dirichlet boundary condition may be set for the vector potential. The one related to the the axially
symmetric magnetostatics problem is

Aphi Real
The azimuthal component of the magnetic vector potential.

CSC —IT Center for Science (cc



Model 17

Magnetic Induction Equation

Module name: MagneticSolve

Module subroutines: MagneticSolver

Module authors: Juha Ruokolainen

Document authors: Ville Savolainen, Antti Pursula
Document edited: May 24th 2005

17.1 Introduction

The magnetic induction equation describes interaction of a conducting liquid or gas with applied and induced
magnetic fields in the low-frequency domain. The induction equation for the magnetic flux density is always
coupled to the Navier-Stokes equation for the movement of the fluid. The magnetic field, in turn, causes the
Lorentz force in the Navier-Stokes equation. The fluid is typically hot, and the Navier-Stokes equation is
often coupled also to the heat equation.

The induction equation solver can also be used in a body without a moving fluid, i.e., when ¥ = 0 and the
Navier-Stokes equation is not solved. In this case, the problem belongs to the field of magneto-quasistatics.

17.2 Theory

The magnetic induction equation may be derived from the Maxwell’s equations, with the displacement
current in Ampere’s law neglected, and the Ohm’s law for conducting fluids, 7 = U(E + U x E) This
approximation for the behavior of electromagnetic fields in conducting, moving fluids is called magnetohy-
drodynamics.
The magnetic induction equation is given by
a—B+ivaXé—Vx(5xé)=o, 17.1)
at  op
where o is the electric conductivity and p the magnetic permeability of the material. These must be
specified by using the keywords Electric Conductivity and Magnetic Permeability in the
Material section.
The force term induced by the magnetic field for the flow momentum equations is given by

fm =7x B, (17.2)

and the Joule heating in the heat equation by

1
hom = = |77, (17.3)
g
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where 7'is the current density, calculated from the Ampere’s law 7’= V x H. These body forces are specified
by the keywords Lorentz Force and Joule Heat.

The magnetic field can also be divided into external, or applied, and induced field, B = B° + B'. The
external magnetic field B¢ is created by permanent magnets or currents outside the fluid. The external field
may be given to the induction equation solver either from a restart file, e.g., as calculated by the magnetostatic
solver, or defined via the sif file’s keywords Applied Magnetic Field 1, 2 and 3. If the restart file
is used, the components of B¢ are read from the variables named magnetic flux density 1,2 and
3. If both methods are used, the two applied fields are summed together. It is assumed that the sources of the
external field are outside the flow region, i.e., V X Be = 0, and that the time derivative of the external field
can be ignored. The time derivative dB¢ /Ot can, however, be specified directly by the keywords Magnetic
Bodyforce 1,2 and 3. The induction equation solver gives the components of the induced magnetic field
B

Both transient and steady-state solvers for the magnetohydrodynamical system (induction, Navier-Stokes
and heat equations) are available. The magnetostatic and time-harmonic solvers for the external magnetic
field are described elsewhere in the Models Manual. In some cases it is also possible that the velocity is a
priori known, for example when studying induction in a rotating body. Then a user defined velocity can be
used instead of computing the velocity from Navier-Stokes equations.

Currently the induction equation can be solved in a cylindrically symmetric or a general three-dimensional
formulation.

17.2.1 Boundary Conditions

For the induction equation one can apply either Dirichlet or natural boundary conditions. In both cases, one
must check that the computational domain is extended far enough to avoid numerical errors. For this reason,
it is possible to solve the magneto-quasistatics problem in an adjacent body.

The Dirichlet boundary condition for a component of the induced magnetic field B; (we have dropped
now the superscript ¢ that marked the induced field) is

B, = B. (17.4)

B! can be a constant or a function of time, position or other variables. The keywords for the Dirichlet
boundary conditions are Magnetic Field 1,2 and 3.

In the cylindrically symmetric case, the Dirichlet boundary condition for the azimuthal component B,
is in the same units as for the other two components, i.e., in T, and not for a contravariant component. On
the symmetry axis one has to set B, = 0 and By = 0, and 0B, /0r = 0 is applied implicitly.

If no Dirichlet condition is specified, natural boundary condition is applied.

17.3 Keywords

Solver solver id
Note that all the keywords related to linear solver (starting with Linear System) may be used in
this solver as well. They are defined elsewhere.

Equation String [Magnetic Induction]
The name of the equation. It is also possible to use this solver as external procedure. Then the
name of the equation must not be the above (use e.g. Magnetic Field Solver). Also the
following four keywords have to be added with the values give here.

Procedure File "MagneticSolve" "MagneticSolver"
Variable String Magnetic Field
Variable DOFs Integer 3

0}

Exported Variable 1 —dofs 3 electric current
The above four keywords are to be given only when using the solver as an external procedure.
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Nonlinear System Convergence Tolerance Real
This keyword gives a criterion to terminate the nonlinear iteration after the relative change of the
norm of the field variable between two consecutive iterations k is small enough

|B — B* || < el B¥|l,

where € is the value given with this keyword.

Nonlinear System Max Iterations Integer
The maximum number of nonlinear iterations the solver is allowed to do. If neither the material
parameters nor the boundary conditions are functions of the solution, the problem is linear, and
this should be set to 1.

Nonlinear System Relaxation Factor Real
Giving this keyword triggers the use of relaxation in the nonlinear equation solver. Using a factor
below unity is sometimes required to achive convergence of the nonlinear system. A factor above
unity might speed up the convergence. Relaxed variable is defined as follows:

B =\B*+(1-\NB"",

where ) is the factor given with this keyword. The default value for the relaxation factor is unity.

Steady State Convergence Tolerance Real
With this keyword a equation specific steady state or coupled system convergence tolerance is
given. All the active equation solvers must meet their own tolerances for their variable u, before
the whole system is deemed converged. The tolerance criterion is:

[wi = wia || < elful],
where ¢ is the value given with this keyword.

Equation eqg id
The equation section is used to define a set of equations for a body or set of bodies:

Magnetic Induction Logical
If set to True, solve the magnetic induction equation.

User Defined Velocity Logical
Controls whether the velocity is given by the user or computed by another solver. Default value
is False, which means that velocity solution of Navier-Stokes equations is used.

Navier-Stokes Logical
If set to True, solve also the Navier-Stokes equations. For magnetohydrodynamics, this is done,
except when the computational region for the magnetic field is extended beyond the fluid.

Heat Equation Logical
If set to True, solve also the heat equation.

Body Force bf id
The body force section may be used to give additional force terms for the equations.

Lorentz Force Logical
If set true, triggers the magnetic field force for the flow momentum equations.

Joule Heat Logical
If set true, the Joule heating is added in the heat equation.

Magnetic Bodyforce i Real
This keyword can be used to specify explicitly the time dependence of the external field, i.e., the
term —0B° /Ot. This is especially useful for time-harmonic fields, where the time derivative can
be calculated and expressed easily.
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Initial Condition ic id
The initial condition section may be used to set initial values for the field variables. The following
variables are active:

Magnetic Field i Real
For each magnetic flux density component i= 1,2, 3.

Material mat id
The material section is used to give the material parameter values. The following material parameters
may be set for the induction equation. They can be a constant or a function of a given variable.

Magnetic Permeability Real
The magnetic permeability is set with this keyword. For most fluids, the vacuum value for pg
can be used, and the keyword setto 1 .25664e-6.

Electric Conductivity Real
The value of the electric conductivity is set with the keyword. For example, for polythermal
flows the conductivity could be a function of the temperature.

Applied Magnetic Field i Real
This keyword can be used to specify the external field, or a part of it, and its contribution to the
term V x (¥ x B¢). The field may be a function of, e.g., time or position.

MHD Velocity 1 Real
The user defined velocity can be given with these keywords with 1=1, 2, 3.

Boundary Condition bc id
The boundary condition section holds the parameter values for various boundary condition types.
Dirichlet boundary conditions may be set for all the primary field variables. The ones related to
induction equation are

Magnetic Field i Real
Dirichlet boundary condition for each magnetic flux density component i= 1,2, 3.
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Electrokinetics

Module name: Electrokinetics

Module subroutines: helmholtz_smoluchowskil, helmholtz_smoluchowski2,
helmholtz_smoluchowski3, helmholtz_smoluchowski

Module author: Thomas Zwinger

Document author: Thomas Zwinger

Document created: April 13th 2005

18.1 Introduction

If dealing with electrolytic fluids constrained to small volumes, surface forces caused by electric surface
charges in combination with externally applied electrostatic fields are sufficient strong to affect the fluid
volume. If these effects are utilized to attenuate the fluid volume, we talk of Electrokinetics. The term
Electroosmotic Flow (EOF) is used in connection with the attenuation of a net charge inside a originally
neutral electrolyte caused by separation induced by a surface charge of a wall.

18.2 Theory

Chemical reactions between the contents of a liquid and the wall material may lead to a net charge of the
containment at the wall-liquid interface. If the liquid is an electrolyte (i.e., it contains free ions), ions of
opposite charge align along the wall creating the Stern layer. Adjacent to the Stern layer, a charge separation
- called the diffuse layer of the initially neutral electrolyte takes place. Due to the two layer structure the
whole are area of charge separation in the vicinity of a wall is called the Electric Double layer (EDL).

18.2.1 Electroosmotic slip velocity

Considering a symmetric electrolyte — i.e., the bulk ion density of ions with opposite valence numbers £z
are equal na' = ny = Mg — at a certain temperature, 7', the typical width-scale of the EDL is given by the

Debye length [1]
1/2
ereo kp 1o
A =|—7—5 . 18.1
P (2 ng 22 €3 > (18.1

Here e stands for the unit charge and &}, denotes the Boltzmann constant. The relative permittivity of the
electrolyte and the permittivity of vacuum are given by ¢; and €, respectively.

The potential, ¢ and the volume charge density, p., within the EDL are tightly coupled to each other by
the Poisson-Boltzmann equation (20.4) (see chapter 20). In order to exactly resolve the dynamics close to the
walls, (20.4) should be solved and the resulting specific electric force then be considered in the equation of
motion. Nevertheless, provided the typical length scales of the flow perpendicular to the containment walls,
H, strongly exceed those of the EDL — in other words, we obtain very small values for the non-dimensional
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group L = Ap/H < 1 - the dynamics of the electrolyte inside the EDL does not have to be resolved at
all. In this case simple considerations of a force balance between shear stress and electric force lead to a slip
condition for the fluid [2]. At the boundary, the tangential velocity is set to the Helmholtz-Smoluchowski
velocity

Tiang, = g = o I0C, (18.2)
25
with u¢ standing for the local fluid viscosity. The zeta potential, ( — a property depending on the electric
properties of the wall material as well as the electrolyte — usually is determined experimentally. From a
physical point of view it can be interpreted as the value of the solution obtained by (20.4) at the Stern layer.
The tangential component, E_’atang,, of the external electric field, E, is evaluated from the outward pointing
surface normal 77, applying the following relation

Etang. = E - (E . ﬁ) 7 (18.3)

Alternatively, the resulting slip velocity may be related to the tangential field using the Electroosmotic Mo-
bility, pugor

UH-s = HEO Etangu (18.4)
A combination of (18.2) and (18.4) leads to the following identity
ppo = 08 (18.5)
Mt

18.3 Limitations

e The Helmholtz-Smoluchowski velocity should not be applied if the non-dimensional group £ defined
in 18.2.1 is of unity order or larger. Then the potential- and charge density distribution as well as the
dynamics of the electrolyte inside the EDL has to be resolved.

e Inastrict sense, the Helmholtz-Smoluchowski theory applies only to configurations where the normal-
component of the external field, F - 77, is small. If dealing with electric insulating wall materials — as
it is usually the case in microfluidic applications — this condition is implicitly complied with.

o The assumption of a Newtonian fluid underlies the derivation of the Helmholtz-Smoluchowski veloc-
ity.

e The function helmholtz_smoluchowski can only be applied on boundaries of two-dimensional
domains, where the tangential direction is uniquely defined.

18.4 Keywords

Keywords for helmholtz_smoluchowski
Constants

Permittivity Of Vacuum Real [8.8542e-12 C?/Nm?]
permittivity of vacuum, only needed if Helmholtz-Smoluchowski velocity is defined using ex-
pression (18.2)

Equation equation id

Electric Field String [computed, constant]
the option for how to evaluate the electric field should be set to one of these values.
If set to computed, the function will search for Electric Field {1,2, 3} in the list
of solver variables. If set to constant, the function will search for Electric Field
{1,2,3} inthesectionMaterial material id, wherematerial idistheid-number
associated with the material parameter list of the electrolyte
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Material material id
If the Helmholtz-Smoluchowski velocity is defined using expression (18.2), then the following key-
words have to be provided in this section

Viscosity Real
viscosity of the electrolyte

Density Real
volumetric density of the electrolyte

Relative Permittivity Real
relative permittivity of the electrolyte

Boundary Condition bc id
In two-dimensional configurations the Helmholtz-Smoluchowski velocity directly can be assigned to
the tangential component of the velocity field

Normal Tangential Velocity Logical True

Velocity 2 = Variable Dummyargument
Real Procedure "Electrokinetics" "helmholtz_smoluchowski"
Sets tangential EO slip velocity

The argument Dummyargument can be any existing variable, since it is not used to evaluate the
velocity.

In three-dimensional configurations (and as an alternative also in two-dimensional), the velocity has
to be defined for each component

Normal Tangential Velocity Logical False

Velocity 1 = Variable Dummyargument

Real Procedure "Electrokinetics" "helmholtz_smoluchowskil"
Velocity 2 = Variable Dummyargument

Real Procedure "Electrokinetics" "helmholtz_smoluchowski2"
Velocity 3 = Variable Dummyargument

Real Procedure "Electrokinetics" "helmholtz_smoluchowski3"

The argument Dummyargument can be any existing variable, since it is not used to evaluate the
velocity.

If the Helmholtz-Smoluchowski velocity is defined using expression (18.2), then the zeta potential, ¢,
for the specific boundary region has to be defined

Zeta Potential Real
Sets the zeta-potential for this boundary

Alternatively, the user can declare the EO-mobility, as explained in (18.5)

EO Mobility Real
Sets EO mobility for this boundary

Bibliography

[1] G.E. Karniadakis and A. Beskok. Micro flows : fundamentals and simulation. Springer-Verlag, New
York, Berlin, Heidelberg, 2001.

[2] R.-J. Yang, L.-M. Fu, and Y.-C. Lin. Electroosmotic Flow in Microchannels. J. Colloid and Interface
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my

electrolyte

Figure 18.1: Structure of the EDL. The value of the induced potential, ¢ at the Stern layer usually is referred
to as the zeta-potential, ¢
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Reduced Dimensional Electrostatics

Module name: StatElecBoundary
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StatElecBoundaryCharge, StatElecBoundarySpring
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Module authors: Peter Raback

Document authors: Peter Raback
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19.1 Introduction

In some applications the geometry is such that the 3D electrostatics may quite accurately be reduced to a 1D
problem. This is the case for nearly aligned planes. If the angle between the planes is ¢ (in radians) the error
of this approximation is roughly 2,2 /3. Therefore we may use an analytical solution that results directly
from the distance of the planes that are in different potential. The ideal model may be further developed by
taking into account perforated structures and dielectric layers.

19.2 Theory

It is assumed here that the electric field is stationary in the time-scale under study. The electric field E may
be expressed with an electric scalar potential ¢,

E =V¢. (19.1)
If there are no free charges, the scalar potential may be solved from
—V.-eVg=0. (19.2)

When one dimension is much smaller than the other two we may assume that the field is one-dimensional.
Then the electric field resulting from potential difference ® = A¢ is

- (0]
E=Efi= Eﬁ’ (19.3)

where 7 is the unit normal and d(7) is the height of the aperture. The energy density per unit area is now,

e=—eF%d=—. (19.4)
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which corresponds to a induced charge density on the surface

ed

¢=—- (19.5)

The force is obtained from the derivative of the energy,

Oe eP?

f:%:_ﬁ’ (19.6)

and the spring constant from the derivative of the force,

0 e®?

k- 6% - (19.7)

The forces and spring constants are always aligned in the direction of the surface normal since any other
direction is incompatible with the original assumptions.

19.2.1 Electrostatics of perforated structures

If there are holes or other imperfections in the structure they may be homogenized over the whole area. By
computing the electric energy and force in the presence and absence of holes we get correction factors

€holes = Q€ideal (19.8)
and

fholes = ﬂfideal (19.9)

The correction terms may be precalculated for a given geometry. However, if the relative change in the
aperture is large the correction terms should be modeled in some manner. we would also like to have similar
expressions for the spring constant

khotes = Ykideat- (19.10)
If we assume that ej, )¢5 is proportional to 1/d then the following relations may easily be derived.
B=a—ad (19.11)
and )
y=a—dd+ 5a”d2, (19.12)

where the derivation is done respect to d.

Now we are only left with the problem of finding a nice functional approximation for . The holes in
the membrane may be expressed using three dimensionless variables d = d /T, b=b /rand R = R/r. Here
r is the hole radius, b the hole depth, d the aperture and R the distance between holes. When R >>1and
b >> 1 the correction depends only on d. ~ ~

Numerical computations suggest that the correction «(d) should approach unity as the distance d ap-
proaches unity. On the other hand, it should approach 1 — ¢ for small values of d. Here ¢ is the area fraction
of the holes.

Numerical calculations suggest that a second order rational polynom gives quite an accurate fit to the

computed results,
1

B ql + a1d+a2d2'
Fully analytical formulas are now more tedious but the values for 5 and  are easily calculated using the
derivatives

a(d) =1 (19.13)

+ 2a9d
d) = @ 19.14
a(d) q(1+a1d+a2d2)2’ ( )
and ) 55
— 942 — _
a(d)’ = 224 3a1a2d — 3ayd (19.15)

(1 —+ ald + a2d2)3

Least squares fitting to the numerical computations suggest that for cylindrical hole a1 = 4.2523, ay =
0.4133, for a rectangular slot a; = 2.3198, as = 0.2284 and for a square hole a; = 3.8434, as = 0.3148.
When fitting the model the suggested constant term diverged up to 4 % from unity but the value one was
enforced anaway because it has the nice limiting value properties.
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19.2.2 Dielectric layer

If the conductor is covered with a dielectric layer we need to modify the equations. We assume that the
aperture consists of two materials with permittivities €1 and €5 and thiknesses d; and ds. Because the flux
must be the same this means that the fields are

o
FH=———— 19.16
! dl +€1d2/€2 ( )
and o
Fh= —n——. 19.17
2 gady /g1 + da ( )
Defining d, = dy + €1d2/e2 these become
o
Bi=o (19.18)
and o
By—= 12 (19.19)
&2 d’I‘

The total energy density is then

1 d1 1 82 d2 51(1)2
_ 1 g2 1Eiged2 _ , 19.20
T E LY e T 2, (19:20)

We assume that the resonator moves so that d; changes and ds remains constant. Then the force density is

de de Od, g1 P2

_ 2 _ == 19.21
/ 0dy  0d, 0dy 2d2 ( )
And similarly the spring constant density
8f &1 (1)2
= = . 19.22
od; a3 ( )

These expressions may be used inside the integral instead of the constant field values to account for the
dielectric layer. It may be noted that the equations are exactly the same as for the case without the layer
except that the aperture d is replaced with the efficient aperture d,, = dy + £1d3/e5.

19.3 Implementation issues

This module is not a solver in itself. It only provides boundary conditions for real models. Natural models
to combine with these boundary conditions are models describing deformation in solid structures. For plates
the conditions are applied to the leading dimension while for generic 3D solids the conditions are applied
to the boundaries. Therefore the same subroutines may be applied to either boundary or to material section.
There is actually just one subroutine and the value it returns is defined by the name of the routine used to
call it.

These routines here were historically developed for MEMS modeling in a different setting and were
much later added to the open source publication as a lighter version.

19.4 Keywords

Constants

Permittivity Of Vacuum Real [8.8542d-12]
The default is given in SI units. In other units the constant should be changed approriately.

Boundary Condition bd id
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Procedure "StatElecBoundary" "StatElecBoundaryForce"
Function that returns the nodal force density.

Procedure "StatElecBoundary" "StatElecBoundaryCharge"
Function that returns the nodal charge density.

Procedure "StatElecBoundary" "StatElecBoundaryEnergy"
Function that returns the nodal energy density.

Procedure "StatElecBoundary" "StatElecBoundarySpring"
Function that returns the nodal spring density.

Gap Height Real
Distance on which the 1D electrostatic model is applied for. May depend on displacement, for
example, via MATC functions.

Potential Difference Real
Potential difference between the plates.

Relative Permittivity Real
Relative permittivity of the material between the plates.

Layer Thickness Real
There may be e non-conducting layer on top of the plate. If this keyword is not defined no layer
is assumed.

Layer Permittivity Real
Relative permittivity of the layer.

Hole Type String [slot / round / square]
The 1D electrostatics can account also for perforated sturctures if the depth of the hole is large
compared to the width of the hole. The different hole geometries are an infinite slot, a round hole
and a square hole.

Hole Size Real
The size of the hole is for a round hole the radius, for a square half the side and for a slot half of
the width.

Hole Fraction Real
The fraction of the holes on the surface.

Hole Depth Real
The depth of the holes i.e. also the thickness of the perforated plate.
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Module subroutines: PoissonBoltzmannSolve
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Document edited: 10.8.2004

20.1 Introduction

The macroscopic electromagnetic theory is governed by the Maxwell’s equations. In steady state the electric
field may usually be solved from a simple Poisson equation. However, if there are free charges in the domain
that are affected by the electric field the equation is no longer valid. Also the contribution of the free charges
need to be taken into consideration. If the electrostatic force is the only force affecting the distribution of
the electric charges then the potential in the steady-state is given by the Poisson-Boltzmann equation [1].
This equation may find its use in microfluidics and electrochemical applications. Note that if the charge
distribution is affected by the flow distribution of the carrier fluid this equation is no longer valid.

20.2 Theory

The electrostatic equation for the electric potential ¢ yields,
-V .-V =p, (20.1)

where ¢ is the permittivity of the medium and p is the charge density. Assuming that there is a fixed charge
density and both positive or negative moving ions the charge may be written as

p=npo+te(zn +ztnh) (20.2)

where py is interior charge distribution of fixed positions of all solute charges, and e is the unit charge of a
electron, and z is the charge number of the positive or negative ions, and n is the corresponding ion density.

The electrochemical potential 4 of the ions is defined by 1 = ez¢ + kT Inn, where the first term is the
electrostatic contribution and the second term comes from the entropy of the ions at the weak solution limit.
In equilibrium g, is constant over the whole domain and thus the ion density obeys a Boltzmann distribution,

n = nge ¢*¢/ksT (20.3)

where kg is the Boltzmann constant. Inserting this to the Poisson equation we obtain the Poisson-Boltzmann
equation that determines the potential field self-consistently,

—V.-eVo=po+ ez_nae_ezw/kBT + ez*nge_ezW/kBT. (20.4)
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A special case of the equation is obtained if the charge numbers and the concentrations are equal, z =
—2~ =zt and ng = ny = ng . Then the equation simplifies to

—V eV = py — 2ezngsinh(ezg/kpT). (20.5)
The Poisson-Boltzmann equation is obviously nonlinear. We will show the iterative procedure only for this
case, the generic case is dealt similarly.
20.2.1 Iteration scheme

Defining o = 2ezng and 3 = ez/kpT the Poisson-Boltzmann equation for a symmetric electrolyte may be
written as

— VeV = pg — asinh([9). (20.6)
The straight-forward iterative procedure treats only the left-hand-side of the equation in an implicit manner,
— VeVt = py — asinh(Bo™). (20.7)

The convergence of this scheme is, however, quite poor for many cases of practical interest. An improved
strategy should linearize also the right-hand-side.
Making a Taylor’s expansion we may approximate

sinh(B¢" ) & sinh(8¢™) + B cosh(Be™) (¢ — ¢(™) (20.8)
which results to the Newton iteration scheme
—V - eV + afcosh(Bo™) | ¢+
= po — asinh(8¢™) 4+ aB cosh(Bo™)p™. (20.9)

This scheme has good convergence properties and is usually the method of choice.

20.2.2 Boundary conditions

For electric potential either Dirichlet or Neumann boundary condition can be used. The Dirichlet boundary
condition gives the value of the potential on specified boundaries. The Neumann boundary condition is used
to give a flux condition on specified boundaries

o =eVe- i, (20.10)

where o is the surface charge density.

20.2.3 Derived quanties
When the potential has been solved the electric field may be obtained as a postprocessing step from
E=-ve. (20.11)
Charge density may be obtained as the right-hand-side of the Poisson equation,
p=po+ ez*nae*”_‘z’/kBT + ez*na'efeer‘i’/kBT. (20.12)

which in symmetric case yields,

p = po — 2ezng sinh(ez¢/kpT). (20.13)
The energy density of the field ay be computed from
12 = 1
e= 5E -D = 5e(w)?. (20.14)

However, in a more generic treatment also the connribution of the concentration should be included in the
expression of the energy.
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20.3 Notes on output control

The user can control which derived quantities (i.e. electric field and electric energy) are calculated.

There are also available two choices of visualization types for the derived quantities. The node values
can be calculated by taking the average of the derived values on neighboring elements (constant weights).
This results often in visually good images. The other possible choice is to weight the average with the size of
the elements, which is more accurate and should be used when some other variable depends on these derived
values. The latter choice is also the default.

20.4 Keywords

Constants

Permittivity Of Vacuum Real [8.8542e-12 C2/Nm?]
Boltzmann Constant Real [1.3807e-23 J/K]
Unit Charge Real [1.602e-19 C]

Equation equation id

Calculate Electric Energy Logical [False]
Controls whether the electric energy density is written in results files (default False).

Solver solver id

Equation String Poisson Boltzmann Solver

Variable String Potential
This may be of any name as far as it is used consistently also elsewhere.

Variable DOFs Integer 1
Degrees of freedom for the potential.

Procedure File PoissonBoltzmannSolve PoissonBoltzmannSolve
Following are listed three keywords with default values for output control.

Nonlinear System Max Iterations Integer
The maximum number of nonlinear iterations.

Nonlinear System Convergence Tolerance Real
The relative error after which the iteration is terminated.

Nonlinear System Newton After Iterations Integer
The number of iterations after which Newton iteraration is turned on. The default is zero which
should usually be optimal.

Nonlinear System Newton After Tolerance Real
Optional parameter which gives the tolerance in error after which Newton iteraration is turned
on.

Calculate Electric Field Logical [True]
Calculate Electric Flux Logical [True]
Constant Weights Logical [True]
Used to turn constant weighting on for the results.
Material mat id
Relative Permittivity Real
The total permittivity is the product of the relative permittivity and the permittivity of vacuum.

Reference Temperature Real
This keyword is used to give the temperature occuring in the Boltzmann factor.
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Charge Number Integer
For symmetric cases the charge number. For unsymmetric cases one may give separately Positive
Charge Number and Negative Charge Number.

Ion Density Integer
For symmetric cases the original density of ions. For unsymmtric cases one may give separately
Positive Ion Densityand Negative Ion Density.

An alternative set of parameters are also possible which are particularly suitable for testing purposes.
These are limited to the symmetric case where the potential normalized with the Zeta potential is
solved. Then the permittivities should be set to unity and only two variables are needed to define the
case.

Poisson Boltzmann Beta Real

This keyword gives the ratio of parameter 3 to the the Zeta potential.
Poisson Boltzmann Alpha Real

This keyword gives the parameter «

Body Force bodyforce id

Charge Density Real
The fixed charge distribution that is not affected by the electric field.

Boundary Condition bc id

Potential Real

Electric Flux BC Logical
Must be set to True if flux BC is used.

Surface Charge Real
Gives the surface charge for the Neumann boundary condition.
Bibliography
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21.1 Introduction

The flow of fluids is in the continuum level usually described by the Navier-Stokes equations. For narrow
channels this approach is an overkill and usually not even necessary. Neglecting the inertial forces and
assuming fully developed laminar velocity profiles the flow equations may be reduced in dimension resulting
to the Reynolds equation.

The current implementation of the Reynolds equation is suitable for incompressible and weakly com-
pressible liquids as well as for isothermal and adiabatic ideal gases. The nonlinear terms for the compressible
fluids are accounted for. The fluid is assumed to be newtonian i.e. there is a direct connection between the
strain rate and stress. The equation may be solved either in steady state or in a transient mode.

There is an additional solver for postprocessing purposes that computes the local heat generation field
using the Galerkin method. It also computes the integrals over the force and heating fields over the whole
area.

21.2 Theory

The underlying assumption of the Reynolds equation is that the flow in the channel is fully developed and
has thus the Hagen-Poiseuille parabolic velocity profile. Accounting also for the movement of the planes
and leakage trough perforation holes the pressure may be solved from the equation

ph? 1 . dp
A 2Ep) —vop= V- (phi) +h L+ pu,, 21.1
v (1277Vp> pp 2V (phvy) + N + pup (2L.1)

where p is the density, 7 is the viscosity, p is the pressure and h is the gap height, v, is the tangential velocity,
and v, is the velocity in direction of the surface normal [1, 5]. Holes may be homogenized using the flow
admittance Y which gives the ratio between pressure drop and mean flow velocity through the hole.

The exact form of the Reynolds equation depends on the material law for density, p(p). The absolute
value of density does not play any role and therefore we may study just the functional forms. For gases we
solve for the pressure variation from the reference pressure P rather than for the absolute pressure. The
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different functional forms for some idealized material laws are the following:

px  (Po+p) isothermal ideal gas
pox (Py4p)Y/7 adiabatic ideal gas
p X 1 incompressible

p X er/P weakly compressible.

Here v = C},/Cy is the specific heat ratio and 3 the bulk modulus. In discretization of the equations it is
also useful to derive the functional dependencies of the density derivatives in respect to pressure,

Pp X 1 isothermal ideal gas
pp o< (1/7)(Po+p)'/7~1  adiabatic ideal gas
Pp X 0 incompressible

Pp X p/B weakly compressible.

In order to improve convergence of the iteration of the nonlinear system some terms including differen-
tials of density may be expressed implicitly using pressure. This way equation (21.1) may be written in the
following form:

T W N S ~
v (1277Vp> Y pp pphat zpphvt vp_va (hty) + pop. (21.2)

The surface velocity ' may also be given in normal cartesian coordinate system. Then the normal and
tangential components may easily be obtained from
UV, = U-7
Uy = U—upd.
The normal velocity and gap height are naturally related by
__0Oh
ot

In transient case the user should make sure that this relationship is honored.

(21.3)

Un

21.2.1 Flow admittances of simple geometries

The flow admittance, Y, occurring in the Reynolds equation may sometimes be solved analytically for
simple hole geometries from the steady-state Stokes equation. Generally Y depends on the history but
here we assume that it is presents the steady-state situation of the flow [2, 5]. This means that inertial and
compressibility effects are not accounted for. For cylindrical holes the admittance then yields,

D2

= 21.4
320’ (21.4)

where D is the diameter of the holes and b is the length of the hole. In case of a narrow slot with width W
the admittance is given by
W2
~ 120

(21.5)

21.2.2 Gas rarefaction effects

Generally the Reynolds equation could also be used to model nonnewtonian material laws. The current
implementation is limited to the special case of rarefied gases. The goodness of the continuum assumption
1 depends on the Knudsen number, K,,, which is defined by

A

K, =72, 21.
W (21.6)
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where ) is the mean free path of the molecules and £ is the characteristic scale (here the gap height). In this
solver only the dependence with pressure is taken into account from the formula

1
1 +p / Py
When the Knudsen number is very small (/;,, < 1) the gas may be considered as a continuous medium.
When the Knudsen number is in the transition regime (K,, ~ 1) we may take the gas rarefaction effect
into account by an effective viscosity. This accounts for the slip conditions of the flow in the channel by
decreasing the viscosity value. An approximation given by Veijola [4] is

_ Mo
1+ 9.638K1-159°

It s relative accuracy is 5 % in the interval 0 < K,, < 880.

A Ao- 2L7)

n (21.8)

21.2.3 Boundary conditions for the Reynolds equation

The Reynolds equation may have different boundary conditions. The natural boundary condition that is

obtained by default is 5
P
= 0. (21.9)
This condition may be used at symmetry and closed boundaries.

If the aspect ratio of the resonator is large then the pressure variation at the open sides is small compared
to the values far from boundaries. Then may set Dirichlet boundary conditions (p = 0) for the pressure.
However, if the aspect ratio is relatively small the open side effects should be taken into account. The
pressure variation at the side is not exactly zero while also the open space has a flow resistance. The pressure
derivative at the boundary is approximated by

o _p

on L’
where L is the effective added length of the open sides [3]. If gas rarefaction is not accounted for then
L = 0.8488h, otherwise

(21.10)

L = 0.8488(1.0 + 2.6 76 K2-5%) h. (21.11)

21.2.4 Postprocessing

When the equation has been solved the solution may be used to compute some data for postprocessing
purposes. The local volume flux in the lateral direction may be obtained from

h3
q=—~-Vp+ hvy. (21.12)
127
The total force acting on the surface is
ja :/ (pﬁ+ ﬁﬁt) dA, (21.13)
A h

where the first term is due to pressure driven flow and the second one due to sliding driven flow. Also the
heating effect may be computed. It consist of two parts: pressure driven flow and sliding flow. The local
form of this is

3
=2
h=— 2.1 . 21.14
121 Vpl* + h|“t‘ ( )
Therefore the total heating power of the system is
Q :/ qdA. (21.15)
A

It should be noted that if the velocity field ¥ is constant then the integral quantities should fulfill the condition
Q=F-7

Note that the above implementation does not take into account the leakage through perforation holes nor
the compressibility effects of the fluids.
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21.3 Keywords

The module includes two different solvers. ReynoldsSolver solves the differential equation (21.2) while
ReynoldsHeatingSolver solves the equation (21.14) and computes the integrals. The second solver
only makes sense when the pressure field has already been computed with the first one. The second solver
uses the same material parameters as the first one.

Keywords for ReynoldsSolver
Solver solver id

Equation String ReynoldsSolver
A describing name for the solver. This can be changes as long as it is used consistently.

Procedure File "ReynoldsSolver" "ReynoldsSolver"
Name of the solver subroutine.

Variable String FilmPressure
The name of the variable may be freely chosen as far as it is used consistently also elsewhere.

Variable DOFs Integer 1
Degrees of freedom for the pressure. This should be 1 which is also the default value.

Procedure File "ReynoldsSolver" "ReynoldsSolver"
The name of the module and procedure. These are fixed.

Apply Limiter Logical
The generic soft limiters may be applied for the Reynolds equation in order to mimic the effects
of cavitation. With this flag active the minimum and maximum limiters are accounted.

Nonlinear System Convergence Tolerance Real
The transient equation is nonlinear if the relative displacement or pressure deviation is high.
The iteration is continued till the relative change in the norm falls under the value given by this
keyword.

Nonlinear System Max Iterations Integer
This parameter gives the maximum number of nonlinear iterations required in the solution. This
may be set higher than the typical number of iterations required as the iteration procedure should
rather be controlled by the convergence tolerance.

Material mat id

Gap Height Real
Height of the gap where the fluid is trapped. If the case is transient the user should herself make
sure that also this variable has the correct dependence on time.

Surface Velocity 1 Real
The velocity of the moving body may be given in either cartesian coordinates, or in ones that are
already separated to normal and tangential directions. In the first case the velocity components
are given with this keyword with 1=1, 2, 3.

Tangent Velocity i Real
For setting the tangential velocity (i.e. sliding velocity) use this keyword with i=1, 2, 3.

Normal Velocity Real
Normal velocity is the velocity in the direction of the surface normal. Typically a negative value
means contraction.

Viscosity Real
Viscosity of the gas.

Viscosity Model String
The choices are newtonian and rarefied. The first one is also the default.
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Compressibility Model String
The choices are incompressible,weakly compressible,isothermal ideal gas,
and adiabatic ideal gas.

Reference Pressure Real
Reference pressure is required only for the ideal gas laws.

Specific Heat Ratio Real
This parameter is only required for adiabatic processes. For ideal monoatomic gases the ratio is
5/3. Only required for the adiabatic compressibility model.

Bulk Modulus Real
The parameter (3 in the weakly compressible material model.

Mean Free Path Real
If the viscosity model assumes rarefied gases the mean free path of the gas molecules in the
reference pressure must be given.

Flow Admittance Real
The steady-state flow admittance resulting from perforation, for example.

Body Force bf id

FilmPressure Lower Limit Real
The lower limit for the pressure that will be iteratively be enforced when the soft limiters are
active.

Boundary Condition bc id

FilmPressure Real
Sets the boundary conditions for the pressure. Usually the deviation from reference pressure is
zero at the boundaries.

Open Side TLogical
The open end effect may be taken into account by setting this keyword True.

Keywords for ReynoldsPostprocess

This solver uses largely the same keywords that are already defined above. Only the Solver section has its
own keyword settings. This solvers should be active in the same bodies than the ReynoldsSolver.

Solver solver id

Equation String ReynoldsPostprocess
A describing name for the solver. This can be changes as long as it is used consistently.

Procedure File "ReynoldsSolver" "ReynoldsSolver"
Name of the solver subroutine.

Reynolds Pressure Variable Name String
The name of the field that is assumed to provide the pressure field. The defaultis FilmPressure.
Note that the Variable of this equation need not to be defined since it is automatically set when
any of the field computation is requested.

Calculate Force Logical
Calculate the forces resulting from the pressure distribution computed with the Reynolds equa-
tion. The name of the field is obtained by adding the suffix Force.

Calculate Flux Logical
Calculate the fluxes resulting from the pressure distribution computed with the Reynolds equa-
tion. The name of the field is obtained by adding the suffix F lux.

Calculate Heating Logical
Calculate the heating efficiency from the pressure distribution computed with the Reynolds equa-
tion. The name of the field is obtained by adding the suffix Heat ing.
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Calculate Force Dim Integer
By default the dimension of the force field is the mesh dimension plus one. Sometimes the pres-
sure lives on a 1D line of a 2D mesh. Then this keyword may be used to supress the dimension
of force to two.

Calculate Flux Dim Integer
As the previous keyword but for the flux.
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Model 22

Richards equation for variably
saturated porous flow

Module name: RichardsSolver

Module subroutines: RichardsSolver, RichardsFlux
Module authors: Peter Raback

Module status: Alpha

Document authors: Serge-Etienne Parent and Peter Riback
Document created: 22.12.2010

Document edited: 22.12.2010

22.1 Introduction

Richards equation is a non-linear partial differential equation that represents the movement of fluids through
porous media.

The current implementation of the Richards equation uses normal Lagrange elements and therefore the
conservation of flux cannot be guaranteed. Dense meshes are required if the variations in the permeability
are high.

This version should not yet be considered a production version. However, it provides a suitable starting
case for more serious testing and further development.

22.2 Theory

The transient, incompressible, variably saturated, isotropic flow of water in non-swelling porous media is
expressed by the combination of Darcy’s law and the continuity equation, i.e. Richards equation. The
modern form of Darcy’s law can be written as

= —koVH 22.1)

where ¢'is the unit flux, or Darcy velocity (L/T), k., is the fluid hydraulic conductivity of water (L/T), and H
is the total head (L). Since the velocity component of total head can be treated as negligible in porous media,
and air pressure can be considered as constant, total head can be expressed as H = p+ z where p is pressure
(F/L?) (note that p = —1) = u, — Uy ), ¥ is matric suction (F/L?), u,, is the water pressure in pores (F/L?),
u, is the air pressure in pores (F/L?), z is elevation from a datum (depth coordinate of the geometry).

The continuity equation is expressed as

00

CLAN VI 2.2
5 V-q+ S, (22.2)
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where 6 is the volumetric water content (L/L), ¢ is time (T), .S, is a source/sink term (L/T). Richards equation
may now be written as,

g — V- (koVH) + Su, (22.3)
since 8 = f(¢) and k,, = f(¢) the latter equation can be expressed using a pressure form,
90 0
G550 =V (kuVH) + Su, (22.4)
Or, developing total head,
a0 0
ot =V (ky V(=9 + 2)) + Sw, (22.5)

The volumetric water content and the hydraulic conductivity are non-linear functions related to pres-
sure head. Both are commonly expressed by van Genuchten (1980)’s equations. Volumetric water content
function yields

O+ — a0 ifeh >0
0(v) = ol Y (22.6)
93) lfw < 0
And the hydraulic conductivity function is
(lf(achp)"vcmvc(1+(ava)nvc)va)2 .
kw(¢) — kw,sat (1+a:5G)—va/2 s lfﬂ} >0 (227)
kw,satv lflff < 0

where 0 is the volumetric water content (L/L), 6, is the residual volumetric water content (L/L), 6 is the sat-
urated volumetric water content, equal to the porosity (L/L), a,q, nya, My are fitting parameters without
any units.

22.3 Implementation issues

The current implementation is carried out for the total head, H. This results to a weak form where the fluxes
occur naturally. The total head is intuitive since it gives directly the ground water level. Since the time
derivative of the elevation is zero, we may use the following equation to solve the total head,

OH

by + V- (kuVH) = S, (22.8)

From the total head the matric suction will be automatically computed, ¢» = z — H. This makes it possible
to have material laws that depend on it.

For transient problems the first term requires special attention. In the current version the sensitivity of 6
to v is computed from

(22.9)

0 i))—0 i— 1
- SHHERRASD o) vl >
Y O(p(t:))—0(p(ti)—e) otherwise.

This way the effective sensitivity is smeared over the whole timestep, dt = t; — ¢;_1.

The values of the material parameters in the Richards equation vary a great deal depending on the sat-
uration level and type of medium. Therefore it is important to evaluate the water content and hydraulic
conductivity at the Gaussian integration points using the relevant formulas, rather than computing them at
nodal points and thereafter evaluating the values at the Gaussian integration points using a weighted sum
over the nodal values.

22.4 Keywords

The module includes two different solvers. RichardsSolver solves the primary differential equation
while RichardsF lux solves the resulting flux from the computed solution. The second solver only makes
sense when the pressure field has already been computed with the first one. The second solver uses the same
material parameters as the first one.
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Keywords for RichardsSolver
Solver solver id

Equation String RichardsSolver
A describing name for the solver. This can be changes as long as it is used consistently.

Procedure File "RichardsSolver" "RichardsSolver"
Name of the solver subroutine.

Variable String TotalHead
The name of the variable may be freely chosen as far as it is used consistently also elsewhere.

Variable DOFs Integer 1
Degrees of freedom for the pressure. This should be 1 which is also the default value.

Saturated Initial Guess Logical
Use saturated material parameters when computing the first equation for the total head.

Active Coordinate Integer
The coordinate corresponding to the dephth z in the Richards equation. By default the last
coordinate is the active one.

Calculate Matrix Suction Logical
Whether to compute the matric suction from the total head.

Bubbles Logical
Use stabilization by residual free bubbles.

Nonlinear System Convergence Tolerance Real
The Richards equation is always nonlinear and hence keywords related to the nonlinear system
control are needed. The iteration of the nonlinear system is continued till the relative change in
the norm falls under the value given by this keyword.

Nonlinear System Max Iterations Integer
This parameter gives the maximum number of nonlinear iterations required in the solution. This
may be set higher than the typical number of iterations required as the iteration procedure should
rather be controlled by the convergence tolerance.

Nonlinear System Relaxation Factor Real
Keyword related to the relaxation of the nonlinear system.

Material mat id

Porositity Model String
Currently the choices are van Genuchten and Default. The latter does not estimate the
functional forms on gaussian points and hence may have enferior accuracy. Also, currently the
computation of water content derivative is not supported for it limiting its usability to steady
state problems.

Saturated Hydraulic Conductivity Real
Saturated Water Content Real
Residual Water Content Real

van Genuchten Alpha Real

van Genuchten N Real

van Genuchten M Real
The parameters above are the material parameters of the van Genuchten material law that are
used to compute the hudraulic conductivity and water content.

Hydraulic Conductivity Real

Water Content Real
In case the porosity model is constant then the hydraulic conductivity and water content are
given with this keyword.
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Body Force bf id

Richards Source Real
The source term, S, of the equation.

Boundary Condition bc id
Richards Flux Real

The given flux at the boundary.

Keywords for RichardsPostprocess

This solver uses largely the same keywords that are already defined above. Only the Solver section has its

own keyword settings. This solvers should be active in the same bodies than the RichardsSolver.

Solver solver id
Equation String RichardsPostprocess
A describing name for the solver. This can be changes as long as it is used consistently.

Procedure File "RichardsSolver" "RichardsPostprocess"
Name of the solver subroutine.

Target Variable String

The name of the total head field solved by the Richards equation. The default name is Total

head.
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BEM Solver for Poisson Equation

Module name: PoissonBEM

Module subroutines: PoissonBEMSolver
Module authors: Juha Ruokolainen
Document authors: Juha Ruokolainen
Document edited: May 27th 2003

23.1 Introduction

This module solves the Laplace equation by boundary element method (BEM), where the differential equa-
tion is transformed to integral equation along the boundaries. On the boundaries either potential or normal
flux may be defined. A source term may be included (Poisson equation), but the source term remains a
volume integral.

23.2 Theory

The Poisson equation is mathematically described as
—Ad— f=0, in , (23.1)
where f is the given source.

In BEM we transform this equation to integral equation over boundaries. We start by multiplying the
equation by a weight function and integrating over the volume, and integrating by parts

- / Adw d) = / Vo - Vw d) — / a—q)w dl’. (23.2)
Q Q r on

Similarily we may write an equation reversing the roles of ® and w

- / Awd dQ = / Vw - Vo dQ — / 9 & ar. (23.3)
Q Q r on
Substracting the two equations we have
—/AmdQ:—/Aw@dQ—/a—@werr/a—“’@dr (23.4)
o) Q r on T on
Next we choose the weight w as follows:
— Aw = §,.(r"), (23.5)
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so that
- / Awd dQ = O(r), (23.6)
Q
The weight w chosen this way is the Green’s function for the Laplace operator, i.e.
1 -7 1
wlr, ') = %ﬂ” in2d ,w(r,r’) = e LS (23.7)
Finally we add the source term, and we have the equation
0P
d(r) — 6—w dr’ + —@ ar' — fw dQ) = 0. (23.8)
n

Only the source term is now integrated over the volume. This equation may now be discretized by standard
methods.

23.2.1 Boundary Conditions

Boundary conditions may be set for either potential
& =>dronl, (23.9)

or normal flux

— g—q) =gonl. (23.10)
n

23.3 Keywords

Solver solver id
Note that all the keywords related to linear solver (starting with Linear System) may be used in
this solver as well. They are defined elsewhere. Note also that the BEM discretization results to a full
linear system in contrast to FEM discretizations and the ILU preconditioning settings are not available.

Equation String [PoissonBEM]
The name of the equation.

Procedure File ["PoissonBEM" "PoissonBEMSolver"]
This keyword is used to give the Elmer solver the place where to search for the equation solver.

Variable String [Potential]
Give a name to the field variable.

Variable DOFs Integer [1]
This keyword must be present, and must be set to the value 1.

Exported Variable 1 String Flux
If this keyword is given, the output will include the normal flux at boundaries, the name must be
exactly as given.

Exported Variable 1 DOFs Integer [1]
This keyword must be present if Flux values are to be computed, and must be set to the value 1.

Equation eqg id
The equation section is used to define a set of equations for a body or set of bodies:

PoissonBEM Logical
if set to True, solve the Poisson equation, the name of this parameter must match the Equat ion
setting in the Solver section.
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If the mesh has any volume elements with a body id that corresponds to a body where to the Poisson
equation is activated, the value of the potential is computed for these elements as a postprocessing
step. Note that the computation of potential is not a trivial task, so large number of volume elements
may result to long execution time.

Boundary Condition bc id
The boundary condition section holds the parameter values for various boundary condition types.
Dirichlet boundary conditions may be set for all the primary field variables. The one related to Poisson
(BEM) equation are

Body Id Integer
Give body identification number for this boundary, used to reference body definitions in .sif
file. This parameter must be set so that the ElmerSolver knows at which boundaries to solve the
corresponding equation.

Potential Real
Known potential value at boundary.

Flux Real
Known normal flux at boundary.

Normal Target Body Integer
The direction of boundary normals are important for the success of the computation. They
should point consistently outward from the boundaries. This is accomplished either if the mesh
generator automatically orients the boundary elements consistently, or including in the mesh
the parent (volume) elements of the boundaries and using this keyword. The value -1 of this
parameter points to the side where there are no volume elements. If the parameter gets the value
of the body id of the volume elements, the normal will point to that direction.

Body Force bf id
The source term for the Poisson equation may be given here. The volume integral is computed on a
body with a volume mesh and the PoissonBEM equation set to true.

Source Real
The source term for the Poisson equation.
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BEM Solver for Helmholtz Equation

Module name: HelmholtzBEM

Module subroutines: HelmholtzBEMSolver
Module authors: Juha Ruokolainen
Document authors: Juha Ruokolainen
Document edited: May 27th 2003

24.1 Introduction

This module solves the Helmholtz equation by boundary element method (BEM), where the differential
equation is transformed to integral equation along the boundaries. On the boundaries either pressure or
normal flux may be defined.

24.2 Theory

The Helmholtz equation is mathematically described as
(k> 4+ A)® =0, in Q. (24.1)

In BEM we transform this equation to integral equation over boundaries. We start by multiplying the
equation by a weight function and integrating over the volume, and integrating by parts

0P
/(lf2 + AD)w d) = / Ew®dQ — / Vo - Vw dQ + / —wdl. (24.2)
Q Q Q r on
Similarily we may write an equation reversing the roles of ® and w

/ (k* + A)wd dQ = / k2wddQ — / Vw-V® dQ + 8—“’@ dr. (24.3)
Q Q Q r on

Substracting the two equations we have

)
/ (k% + A)Dw dQ = / (k* + A)wd dQ — / 9% ar + 9 g ar (24.4)
Q Q T on T on

Next we choose the weight w as follows:

(k> + A)yw = 6,(r"), (24.5)
so that
/ (k* 4+ A)wd dQ = d(r), (24.6)
Q
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The weight w chosen this way is the Green’s function for the Helmholtz operator, i.e.

1 1 ) /
w(r,r') = ﬁHo(k(T —7'))in2d,w(r,r’") = o exp =) in3d | (24.7)

where Hj is the Hankel function.
Finally we have the equation
0P ow

—wdl'+ | =& dl = 0. (24.8)

é(r) - T 87’7/ T (97”&

24.2.1 Boundary Conditions

Boundary conditions may be set for either pressure
& =dronl, (24.9)

or normal flux

— g—q) =gonl. (24.10)
n

24.3 Keywords

Simulation

Angular Frequency Real
Give the value of the angular frequency for the simulation.

Solver solver id
Note that all the keywords related to linear solver (starting with Linear System) may be used in
this solver as well. They are defined elsewhere. Note also that the BEM discretization results to a full
linear system in contrast to FEM discretizations and the ILU preconditioning settings are not available.

Equation String [HelmholtzBEM]
The name of the equation.

Procedure File ["HelmholtzBEM" "HelmholtzBEMSolver"]
This keyword is used to give the Elmer solver the place where to search for the equation solver.

Variable String [Pressure]
Give a name to the field variable.

Variable DOFs Integer [2]
This keyword must be present, and must be set to the value 2.

Exported Variable 1 String Flux
If this keyword is given, the output will include the normal flux at boundaries, the name must be
exactly as given.

Exported Variable 1 DOFs Integer [2]
This keyword must be present if Flux values are to be computed, and must be set to the value 2.

Equation eg id
The equation section is used to define a set of equations for a body or set of bodies:

HelmholtzBEM Logical
if set to True, solve the Helmholtz equation, the name of this parameter must match the
Equation setting in the Solver section.
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If the mesh has any volume elements with a body id that corresponds to a body where to the Helmholtz
equation is activated, the value of the pressure is computed for these elements as a postprocessing step.
Note that the computation of potential is not a trivial task, so large number of volume elements may
result to long execution time.

Boundary Condition bc id
The boundary condition section holds the parameter values for various boundary condition types.
Dirichlet boundary conditions may be set for all the primary field variables. The one related to
Helmbholtz (BEM) equation are

Body Id Integer
Give body identification number for this boundary, used to reference body definitions in .sif
file. This parameter must be set so that the ElmerSolver knows at which boundaries to solve the
corresponding equation.

Pressure 1 Real
Known real part of pressure at boundary.

Pressure 2 Real
Known imaginary part of pressure at boundary.

Flux 1 Real
Known real part of normal flux at boundary.

Flux 2 eal
Known real part of normal flux at boundary.

Normal Target Body Integer
The direction of boundary normals are important for the success of the computation. They
should point consistently outward from the boundaries. This is accomplished either if the mesh
generator automatically orients the boundary elements consistently, or including in the mesh
the parent (volume) elements of the boundaries and using this keyword. The value -1 of this
parameter points to the side where there are no volume elements. If the parameter gets the value
of the body id of the volume elements, the normal will point to that direction.
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Kinematic Free Surface Equation with
Limiters

Module name: FreeSurfaceSolver

Module subroutines: FreeSurfaceSolver

Module authors: Thomas Zwinger, Peter Raback, Juha Ruokolainen, Mikko Lyly
Document authors: Thomas Zwinger

Document edited: November 12th 2010

25.1 Introduction

Flows with a free surface are to be found in geophysical as well as technical applications. On large scale
flows the free surface usually is governed by a kinematic boundary condition given as a partial differential
equation. This equation then is solved on the specific boundary in combination with the (Navier)-Stokes
equation and the mesh update solver.

25.2 Theory

The implicit equation describing the free surface is given by
F(fvt) :Z_h(xvyat)a (25.1)

with the explicit position of the free surface h(z,y,t). Mass conservation implies that, with respect to the
velocity of the surface, i, F' has to define a substantial surface, i.e.,

F
%—t + @ VF = 0. (25.2)

The net volume flux through the free surface then is given by the projection of the difference between the
fluid velocity at the free surface, @ and the velocity of the free surface with respect to the surface normal

ay = (ilm — i) - 7. (25.3)

In Geophysical context (e.g., Glaciology), a  often is referred to as the net accumulation. With the surface
unit normal defined as UF

7 (25.4)
IVE]

ﬁ:

this leads to oF
aJrﬁVF: —||VF|a.. (25.5)
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Using the definition in (25.1), (25.5) can be rewritten in its explicit form

1/2
on\?> [oh\?
@@

with the components of fluid velocity vector at the free surface given as @ = (u, v, w)". The variational

formulation of (25.6) reads as
1/2
dh  Oh Ok om\?  on\?]"
E—I—u%—&—va—y pdV = w—+ |1+ I + a—y a; pedV, (25.7)
Q Q

where the occurrence of & in the right hand side is inserted from the previous time-step/non-linear iteration,
hence linearizing the equation. In case of a horizontally moving mesh, the contribution in form of an arbitrary
Lagrangian-Eulerian (ALE) formulation has to be included (by default is is omitted). With the horizontal
mesh velocity components, Umesh and vmesh, the ALE version of equation (25.6) then reads

1/2
on\?%  /on\?
(Y ()] e s

Oh oh Oh
Vo —w =

Yo T Vay

oh
7+(U_umesh)7+(7}_vmesh>7_w:

ot ox dy

25.2.1 Limiters

In certain cases the free surface is constrained by an upper hpax (2, y, t) and/or a lower hpin(x, y, t) limit.
For instance, the free surface of a fluid contained in a vessel cannot penetrate the vessel’s walls. This adds
the constraint

hmin S h S hmax (259)

to (25.7) converting the variational formulation into a variational inequality. In order to obtain a with (25.9)
consistent solution a method using Dirichlet constraints within the domain is applied. The exact procedure
is the following:

1. construct the linear system: Ah = f, with the system matrix A and the solution vector h on the
left-hand side and the force vector f on the right hand side

2. set nodes as active if (25.9) is violated

3. for active nodes the matrix and force vector are manipulated such that effectively a Dirichlet condition
h = hmaxmin 18 applied

4. the manipulated system is solved: Ah = f

5. aresidual is obtained from the un-manipulated system: R=Ah— f
6. an active node is reset if the residual is R < 0 (for lower limit) and R > 0 (for upper limit)

The whole algorithm is iterated (within the non-linear iteration loop) until the limit given in Nonlinear
System Convergence Tolerance is reached. In the converged solution the residual represents the
needed accumulation/volume flux (on matrix level, hence not in physical units) needed in order to obtain the
limited solution. Consequently, the system not necessarily is volume conserving if the Dirichlet method is
applied. As the solver in principle works with second order elements, the limitation procedure only converges
with only the between elements shared nodes being subject to the algorithm described in this section. This
is done automatically by the code.

25.3 Constraints

The code only works in Cartesian coordinates and — by the nature of the differential equation — effectively
converges only in a transient simulation. Although, technically, it also can be run in steady state simulations.
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25.4 Keywords

Solver solver id

Equation String "Free Surface Limited"

Variable String Varname
The change in the free surface coordinate. This may be of any name as far as it is used consis-
tently also elsewhere, as Varname is used as a preceding keyword for the exported variable of
the residual, as well as for the accumulation

Variable DOFs Integer 1
Degrees of freedom for the free surface coordinate.

Procedure File "FreeSurfaceSolver" "FreeSurfaceSolver"
The following four keywords are used for output control.

Velocity Implicitness Real
Determines the level of implicitness in the velocity field. Values shall be in the interval ¢, €
[0,1]. The velocity is interpolated between the current and the previous time level such that
u=(1—c,)u""! + ¢, u™. Thus, unity corresponds to complete implicitness (default).

Maximum Displacement Real
This limits the maximal local displacement in a time-step. If exceeded, relaxation automatically
is applied in order to limit the displacement.

Apply Dirichlet Logical
Takes the variational inequality method (here referred to as Dirichlet method) into use. The user
should be aware that if the method is applied (value True) this implies setting the Nonlinear
Max Iterations to a value large enough for the method to converge. The default value is
False.

ALE Formulation TLogical
If set to True, the mesh horizontal mesh velocity is taken into account in the convection term.
The default value is False.

Relaxation Factor Real
The changes in the free surface may be relaxed. The default is no relaxation or value 1.0

Stabilization Method String
Sets stabilization method. Either Stabilized or Bubbles can be set.

Nonlinear System Convergence Tolerance Real
This keyword gives a criterion to terminate the nonlinear iteration after the maximum change in
the free surface coordinate is small enough

max||dR/(R — Ro)|| < e

where e is the value given with this keyword.

Exported Variable 1 String
The residual, which is the essential property in solving the variational inequality has to be given
as an exported variable. The name is fixed by the variable name Varname given in the Solver
section plus Residual. For instance, if the variable is named FreeSurf, the exported vari-
able is expected to be FreeSurf Residual.

Exported Variable 1 DOFs I